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Pharmacometrics = the science of quantitative pharmacology

Chapter 2: Pharmacokinetic and Pharmacodynamic Modelling
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Pharmacokinetic/Pharmacodynamic 
Models
In Fig. 2.4 and Equations 1–4, time is not considered, 
as the assumption of time invariant PD is implicit. 
!erefore, to describe the time course of e"ect, both 
PK and PD models have to be integrated into a PKPD 
model, as represented by Fig. 2.5 [3, 4, 16].

Generally, the dynamics of the response are com-
plex and not simply directly related to the time course 
of drug concentrations in plasma. !is discrepancy 
between the time course of drug exposure and time to 
obtain a response can sometimes be solved by proper 
study design, e.g. in the case of drugs with a fast onset of 
action it is recommended to measure drug concentra-
tion in arterial blood rather than in venous blood. Most 
PK/PD studies in the anaesthesia setting are based on 
arterial blood sampling.

Still, even when high quality data are obtained, the 
lack of direct connection between PK and response 
persists. !is phenomenon is called hysteresis. One of 
the main contributions of PKPD modelling to clinical 
pharmacology is to provide comprehensive models 
capable of describing the course of drug e"ect in rela-
tionship to plasma or blood concentrations in those 
situations.

Models for Delayed Response
In anaesthesia and pain treatment, the observation 
of a delayed response is very common. Fig. 2.6 shows 
a delayed response presented either with respect to 
time (Panel a), or with respect to drug concentra-
tions in plasma (Panel b), where the hysteresis loop 
becomes apparent. Both panels show how the same 
drug concentration seems to be able to have more 
than one e"ect. !ere are several mechanisms that 

can explain the phenomenon of hysteresis. In anaes-
thesia the most commonly quoted one is a slow drug 
distribution between the central compartment (which 
includes plasma/blood) and the biophase (e"ect 
compartment).

As described in Chapter 1 the ‘link’ model pre-
sented schematically in Fig. 2.6c was conceptualized by 
Sheiner et al in 1979 [25]. !e assumptions of the model 
are: (1) the e"ect site receives a small amount of drug, 
(2) drug transfer to and from the e"ect site follows #rst 
order kinetics, (3) at equilibrium, concentrations of 
drug in the biophase (Ce) equal those in plasma and 
(4) total drug concentrations in the biophase are in free 
form (not bound to receptors). keo is the parameter that 
controls the time required to achieve distribution equi-
librium between the central and e"ect compartments.

= −
dC
dt

k C Ct	 )e
e P e0  (5)

Drug e"ects are a function of Ce, instead of Cp in 
Equations 1–4.

Since its #rst use, the e"ect compartment model 
has experienced further developments, for example 
the need to have di"erent keo values to describe the 
time course of BIS at di"erent administration rates 
[26]. Another example is the discrepancy observed in 
the impact of chronic administration of phenytoin on 
the C50 of vecuronium (high potency drug) and rocu-
ronium (low potency drug) where an increase and no 
e"ect was found, respectively, with respect to naïve 
patients [7, 27].

!e quantitative characterization of spinal anaes-
thesia represents another interesting and practical 
application of the PKPD framework that couples com-
partmental PK models (under certain constraints/
assumptions regarding drug disposition in the di"er-
ent segments) with the link model, an approach used 
by Olofsen et al to describe the e"ects of levobupiv-
acaine and ropivacaine in humans [28].

!e so-called turn-over or indirect response mod-
els [29] and those models that account for slow receptor 
deactivation are used to describe delayed response. !e 
indirect response model has been used to describe the 
respiratory depressant e"ects of opioids, based on the 
main assumption that the studied response (i.e. pO2, 
pCO2) is the result of a balance between the rates of 
synthesis and degradation, each of them governed by 
the corresponding rate constant. A drug acts either by 
inhibiting or stimulating the synthesis or degradation 
rates, where the relationship between the synthesis or Fig. 2.5 Typical PK, PD and PKPD pro!les.
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Historical overview of PMX in oncology

• 1980’s: Principles of population PK modeling by 
Lewis Sheiner and Stuart Beal 

• 1990’s: pop PK models of cytotoxics 

COMPUTERS AND BIOMEDICAL RESEARCH 5,441459 (1972) 

Modelling of Individual Pharmacokinetics for 
Computer-Aided Drug Dosage* 

LEWIS B. SHEINER, BARR ROSENBERG,? AND KENNETH L. MELMON 

Departments of Medicine and Pharmacology, Division of Clinical Pharmacology, 
University of California San Francisco Medical Center, San Francisco, California 94122 

Received August 12, 1971 

A conceptual scheme and associated statistical methodology is presented which is 
designed to provide the basis for a clinically useful computer program to suggest optimal 
dosage regimens for a number of drugs for individual patients. Routinely available clinical 
observations will be used to predict the parameters of a pharmacokinetic model, and 
subsequent blood level determinations used to refine these predictions, so that dosages can 
be designed to produce therapeutically desirable blood levels of agents. The system is 
intended to deal with most, if not all, of the influences on drug pharmacokinetics, to 
improve its performance by learning about the individual patient as well as the underlying 
population, and to modify its suggestions for an individual, should his clinical character- 
istics change. It may be used to discover new relationships between physiological states 
and drug pharmacokinetics. The system can exploit prior information in the form of 
theoretical and published data when its data base is small. An encouraging preliminary 
test of the system is reported. 

I. INTRODUCTION 

For many drugs, strong evidence associates drug levels in blood or tissues with 
drug efficacy and toxicity. The evidence is particularly clear-cut for precisely 
those drugs responsible for more than 50 % of dose-related adverse reactions (I) : 
digitalis preparations (2), antiarrhythmic drugs (S-5), and antimicrobials (6). The 
data documenting the wide variation across individuals of drug levels resulting from 
standard dosage regimens, are also compelling. The variation seen in the levels of 
kanamycin, for example, in relation to renal function (7) is a clear example. Hence, 
it is probable that many of the large number of observed adverse reactions (I, S-ZOj 
are the result not of extraordinary individual sensitivity to drugs, but rather of 
dosage regimens leading to inordinately high blood levels. For most individuals and 
most drugs, the level of drug causing efficacy is less than half the level associated with 
toxicity. It therefore seems obvious that by more careful clinical regulation of blood 
levels, toxicity can be reduced without compromising efficacy. This paper proposes 

* This work was supported by NIH Program Project Grant GM-16496 and Training Grant 
GM-01791. 

t Department of Business Administration, University of California, Berkeley, CA. 
Copyright 0 1972 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 
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continuous infusion, were used. Median baseline values were 7.3 and 4.9 !
109/L for leukocytes and neutrophils, respectively. The standard total dose
was 375 mg/m2, but in the individualized groups, the total delivered dose
ranged from 225 to 789 mg/m2. A second course of treatment was
administered to 47 of the patients at least 4 weeks after first treatment.
However, we lacked information on exactly when the second course started,
so we assumed that the leukocyte and neutrophil counts had returned to
baseline before the start of the second course (ie, no carryover effect from the
previous dose was considered). Concentration-time profiles were calculated,
based on actual steady-state concentrations and a literature value of the
elimination half-life (7.5 hours, within the common range of values previ-
ously reported),15 according to

C ! Cave ! "1 " e " kt# from 0 to 72 hours (1)

C ! Cave ! e " ktinf from# 72 hours (2)

where C $ concentration, Cave $ average steady state concentration, k $
elimination rate constant (ln2/t1/2), t $ time from the start of the infusion,
and tinf $ time from the end of the infusion.
2%-deoxy-2%- methylidenecytidine (DMDC). The data set included 65

patients who received an oral once-daily regimen for 7, 10, or 14 days and
85 patients who received an oral bid regimen for 7 or 10 days. Total daily
doses ranged from 12 to 50 mg/m2, and the patients were observed during the
first course (ie, for 21 to 28 days).16-18 In two patients, neutrophil values
increased from & 0.25 ! 109/L to ' 30 ! 109/L in 3 days. Reasons for the
steep rebound could be infection or G-CSF administration (information not
available). To get successful minimization, these high values were excluded.
A total of 823 observations each, for leukocytes and neutrophils, was
modeled. Median baseline values were 8.9 and 6.2 ! 109/L for leukocytes
and neutrophils, respectively. Individual concentration-time profiles were
obtained using doses and empirical Bayes estimates.19

Irinotecan (CPT-11). Leukocytes and neutrophils from 20 patients (79
observations of each type), during the first 21 days after receiving 350 mg/m2
CPT-11 as a 1.5-hour infusion, were included.20 Median baseline values
were 7.8 and 5.2 ! 109/L for leukocytes and neutrophils, respectively. Total
drug concentrations (lactone and carboxyl acid forms) of CPT-11 and the
active metabolite, SN-38, were inserted into the data set. Concentration-time
profiles were obtained by interpolation between observed concentrations and
log-linear extrapolation from the last observed concentration.
Vinflunine. Fifty-nine patients, on a total of 191 courses (842 observa-

tions each of leukocytes and neutrophils) from three phase I studies, were
included.21-23 Median baseline values were 7.0 and 4.8 ! 109/L for
leukocytes and neutrophils, respectively. Three different dose schedules were
given: one administration every 3 weeks (30 to 400 mg/m2, 30 patients);
weekly administration, where one course is 4 weeks (120 to 190 mg/m2, 14
patients); and administration on day 1 and day 8 every 3 weeks (170 to 210
mg/m2, 15 patients). All administrations were 10-minute infusions. Individ-
ual concentration-time profiles were based on an average of 14 concentration
measurements (range, 10 to 15 concentration measurements) per patient,
sampled predose and in the interval of 5 minutes to 168 hours after start of
the infusion. More limited concentration measurements were also made
during subsequent administrations. Log-transformed leukocyte and neutro-
phil counts were used in the vinflunine modeling.
Model development. The docetaxel, paclitaxel, and etoposide data sets

were used to develop the final structural model (Fig 2), which consisted of

one compartment that represented stem cells and progenitor cells (ie,
proliferative cells (Prol)), three transit compartments with maturing cells
(Transit), and a compartment of circulating observed blood cells (Circ). A
maturation chain, with transit compartments and rate constants (ktr), allowed
prediction of a time delay between administration and the observed effect.
The generation of new cells in Prol was dependent on the number of cells in
the compartment; that is, self-renewal or mitosis, a proliferation rate constant
determining the rate of cell division (kprol), and a feedback mechanism from
the circulating cells (Circ0/Circ)$. The feedback loop was necessary to
describe the rebound of cells (ie, an overshoot compared with the baseline
value (Circ0)). It was incorporated in this way because it is known that the
proliferation rate can be affected by endogenous growth factors and cyto-
kines24 and that circulating neutrophil counts and the growth factor G-CSF
levels are inversely related.25 The differential equations were written as

dProl/dt! kprol ! Prol ! "1" EDrug# ! "Circ0/Circ#$ " ktr ! Prol (3)

dTransit1/dt ! ktr ! Prol " ktr ! Transit1 (4)

dTransit2/dt ! ktr ! Transit1 " ktr ! Transit2 (5)

dTransit3/dt ! ktr ! Transit2 " ktr ! Transit3 (6)

dCirc/dt ! ktr ! Transit3 " kcirc ! Circ (7)

The drug concentration in the central compartment (Conc) is assumed to
reduce the proliferation rate or induce cell loss by the function EDrug, which
was modeled to be either a linear function (Slope ! Conc) or an Emax model,
Emax ! Conc/(EC50 * Conc). In the transit compartments, it is assumed that
the only loss of cells is into the next compartment. As the proliferative cells
differentiate into more mature cell types, the concentration of cells is
maintained by cell division. At steady state, dProl/d t $ 0, and therefore
kprol $ ktr. To minimize the number of parameters to be estimated, it was
assumed in the modeling that kcirc $ ktr. To improve interpretability, the
mean transit time was estimated, which was defined as MTT $ (n * 1)/ktr,
where n is the number of transit compartments. Thus, the structural model
parameters to be estimated were Circ0, MTT, $, and Slope (or Emax and
EC50). For consistency, interindividual variability was always (and only)
estimated on Circ0, MTT, and Slope (or EC50). To calculate Slopeu, that is,
Slope based on unbound concentrations (or Slope for paclitaxel), unbound
fractions of 0.02 (docetaxel),26 0.05 (paclitaxel),27 0.14 (etoposide),28 0.97
(DMDC),19 0.37 (CPT-11),29 and 0.22 (vinflunine, Pierre-Fabre, Castres,
France; data on file) were used.
Data analysis. All different drugs were fitted separately. The model

parameters were estimated in a nonlinear mixed effects (“population”)
analysis, where data from all patients were analyzed simultaneously. The
population model parameters estimated were fixed effects, related to the
typical individual, and random effects, with magnitudes of interindividual
variability (IIV) in parameters and magnitude of residual variability between
individual predictions and observations. Log-normal parameter distributions
were used for the IIV as follows:

Pi ! TVP ! exp"%i# (8)

where TVP is the population typical value, Pi is the individual parameter
value, and %i represents the individual deviation. The %s are symmetrically
distributed zero-mean random variables, with a variance estimated as part of

Fig 2. The structure of the pharma-
cokinetic-pharmacodynamic model de-
scribing chemotherapy-induced myelo-
suppression for all investigated drugs.
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A B S T R A C T

Purpose
We developed a drug-disease simulation model to predict antitumor response and overall survival
in phase III studies from longitudinal tumor size data in phase II trials.

Methods
We developed a longitudinal exposure-response tumor-growth inhibition (TGI) model of drug
effect (and resistance) using phase II data of capecitabine (n ! 34) and historical phase III data of
fluorouracil (FU; n ! 252) in colorectal cancer (CRC); and we developed a parametric survival
model that related change in tumor size and patient characteristics to survival time using historical
phase III data (n ! 245). The models were validated in simulation of antitumor response and
survival in an independent phase III study (n ! 1,000 replicates) of capecitabine versus FU
in CRC.

Results
The TGI model provided a good fit of longitudinal tumor size data. A lognormal distribution best
described the survival time, and baseline tumor size and change in tumor size from baseline at
week 7 were predictors (P " .00001). Predicted change of tumor size and survival time
distributions in the phase III study for both capecitabine and FU were consistent with observed
values, for example, 431 days (90% prediction interval, 362 to 514 days) versus 401 days observed
for survival in the capecitabine arm. A modest survival improvement of 39 days (90% prediction
interval, #21 to 110 days) versus 35 days observed was predicted for capecitabine.

Conclusion
The modeling framework successfully predicted survival in a phase III trial on the basis of capecitabine
phase II data in CRC. It is a useful tool to support end-of-phase II decisions and design of phase
III studies.

J Clin Oncol 27:4103-4108. © 2009 by American Society of Clinical Oncology

INTRODUCTION

Drug development in general, and specifically in
oncology, is considered an inefficient process1; this
is the reason that the US Food and Drug Adminis-
tration launched the Critical Path Initiative,2 which
aims to modernize this process. To date, decision
making and trial design during early oncology drug
development remains an empirical process. Antitu-
mor activity in early phase II studies typically is eval-
uated by using objective response rate (ORR), and
achievement of a predefined ORR is the main deci-
sion criteria for proceeding to phase III clinical trials
and to inform phase III study design. Observation of
response in phase II, indeed, is associated with pos-
itive results in subsequent phase III.3,4 However,
ORR estimates in typical, small, noncomparative,
phase II trials are generally pretty imprecise and
uninformative to make go–no go decisions and to

support the design of phase III clinical trials.5,6 In
addition, ORR or progression-free survival (PFS)
end points preclude the conduct of adequately
powered, randomized, phase II studies to estab-
lish dose-response relationships and/or to compare
alternative schedules. There clearly is a need for new
end points and methods to improve the selection of
candidate drug/regimen in early clinical studies.5-8

The use of relative change in tumor size from base-
line has been proposed to compare treatments and
to make decisions on the basis of a smaller number
of patients in randomized, phase II studies.9,10 In the
Critical Path Initiative,2 the concept of model-based
drug development is supported as holding “vast po-
tential to support more efficient and effective devel-
opment of drugs” (Executive Summary, p ii). In this
manuscript, we developed a modeling framework
that comprised a longitudinal exposure-response
tumor growth inhibition (TGI) model to evaluate

JOURNAL OF CLINICAL ONCOLOGY O R I G I N A L R E P O R T

VOLUME 27 ! NUMBER 25 ! SEPTEMBER 1 2009

© 2009 by American Society of Clinical Oncology 4103

147.210.245.180
Information downloaded from jco.ascopubs.org and provided by at Universite de Bordeaux on April 8, 2016 from

Copyright © 2009 American Society of Clinical Oncology. All rights reserved.
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•    Most anticancer agents are given as:

• mg/m² 
• mg/kg 
• mg (flat-dose)

•    Only carboplatin is given in a tailored 
fashion  (i.e., AUC5 or AUC6 dosing).  

How can standard dosing be part of personalized medicine?

•    « One dose fits all »  
    (standard dosing) 



Mixed-effects modeling
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rate (in hour�1). Note that pharmacologists prefer to use the more meaningful notion of

clearance, defined by Cl = kV and thus in units of L·hour�1, which expresses what volume

of blood is “cleared” from the drug by unit of time.

0) Download the structural model at:

http://benzekry.perso.math.cnrs.fr/DONNEES/tp_monolix/one_comp_bolus.txt

1) Go to structural model and load the file one comp bolus.txt as model.

2) Explore initial values of the parameters to get a reasonable initial guess

3) Launch the fit. (Do you understand the meaning of all possible tasks? (EBE = Empirical

Bayes Estimates))

4) Look at the goodness-of-fit of the model for individual fits (plots and Observations vs.

Predictions). What do you conclude about this model?

5) Compute likelihood. Write down AIC (Akaike Information Criterion) for future comparison

Save this project.

3. Absorption

In fact, as seen directly on the data, the dose does not get directly to the plasma. This is

due to the mode of administration of the drug, which was by oral take. Thus, the drug has

to go through an absorption compartment (the gastro-intestinal system) before reaching the

systemic circulation.

V N 
D 

Na 

AAa

The equations for this model write, with Aa(t) and A the amounts of drug in the absorption

and central compartments, respectively, and C(t) the concentration in the central (systemic)

3

compartment: 8
>>>>><

>>>>>:

dAa
dt = �kaAa

dA
dt = kaAa � kA

Aa(t = 0) = D, (t = 0) = 0

C(t) =
A(t)

V
.

1) Write this model in MLXTRAN in a .txt file. MLXTRAN is the language used by Monolix.

You can use the previous model file as a template.

Note the use of the depot function of MLXTRAN to deal with administration of the doses.

The role of this function is to inject doses in the variables, which would normally require

Dirac functions (if no administration length (i.e. perfusion time)) in the differential equations.

It does nothing more than A(t+D) = A(t�D)+D(tD), where tD is a dose administration time and

D(tD) is the dose given at this time (defined in the column AMT (for amount) in the data).

2) Use a proportional error model. Look at the formulas for the error and individual models.

Compare with the theoretical formulas from the class.

3) Fit

3.1) Launch estimation of the population and individual parameters. Does the model

seem appropriate on individual fits?

3.2) What individual contributes most to the likelihood? Run likelihood estimation task,

then plot individual contributions (parameters in the “Plots” button)? Does this corre-

spond with individual fits?

Note: each time you run a task and save in Monolix, files are added to a folder with the

name of the project containing the results. You can find a summary of the fit, population and

individual parameters, predictions for each of the individuals, etc... All these information is

stored in .txt files and can easily be loaded from external softwares (such as R, python or

matlab) for further analysis.

4) Residuals

4.1) Plot the individual and population residuals (parameters in the “Plots” button). Plot

only conditional mode (“Display” panel on the right). (**Do you understand what is the

4

Individual structural model

ψ i = ψpop + ηi, ηi ∼ 𝒩 (0, Ω)

fixed effects random effects

Population fit (MLE)

Theophylline pharmacokinetics 3. Examples
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Figure 3.5: Individual plots for the 12 subjects in the study. Dots represent observations and
the line shows the smoothed profile predicted using the individual estimated parameters.
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Precision and adaptive dosing of TKIs

Bayesian 
Estimation

PK identification

Pop-PK

New patient

Unknown PK parameters

CtOne  
observation

Simulations

Population prior Sparse measurements from 
therapeutic drug monitoring+

Bayesian   estimation

Individual prediction J. Ciccolini

p (ψ i |yi) ∝ p (yi |ψ i) p (ψ i)



Sunitinib in metastatic kidney cancer

80% of AP-HM 
patient have dose 

modification of 
Sutent® 

12.5 <>100 mg 
(-75% ⇨ + 100%!)

Standard dose: 
50 mg

Patient	 Starting	 Total		Su	+	met Sampling Simulated	Trough Proposed	 %
# Dose	(mg) (ng/ml) Time Level	(ng/ml) Dose	(mg) change
1 50 195 5H30 161 25 -50
2 50 55 23H00 56 62,5 25
3 50 37,4 24H15 40 87,5 75
4 50 40 23h45 42 75 50
5 50 166 22H20 158 25 -50
6 50 161 4H45 136 25 -50
7 50 70 24H00 73 50 no	change
8 50 161 4h45 136 25 -50
9 50 17,1 24H00 18 100 100
10 50 170 12H30 149 25 -50
11 50 90 24H00 90 37,5 -25
12 50 44,3 24H00 47 75 50
13 50 88 2H15 76 50 no	change
14 50 106 19H00 100 37,5 -25
15 50 54,2 6H00 42 87,5 75
16 50 141 1H30 81 37,5 -25
17 50 128 24H00 106 37,5 -25
18 50 118,9 1H00 81 50 no	change
19 50 145 19H00 115 37,5 -25
20 50 87 9H30 72 50 no	change
21 50 104 3H20 90 37,5 -25
22 50 125 24h00 112 37,5 -25
23 50 62 19H00 58 62,5 25
24 50 246 24H00 231 12,5 -75
25 50 150 24H00 143 25 -50
26 50 83 12h00 71 50 no	change
27 50 216 24h00 204 12,5 -75
28 50 197 24h00 192 25 -50
29 50 116 8H30 97 37,5 -25
30 50 78 24H00 71 50 no	change
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Model-based dosing regimen for a phase I/II clinical trial

Goal: safe densification of docetaxel (DTX) + epirubicin (EPI) in metastatic breast cancer

Meille et al. (Iliadis), Clin Pharmacokinet, 2016

PK models

PK 
EPI

PD models

PK 
DTX

States w1 tð Þ and w2 tð Þ are two forms of cells corresponding

to two consecutive steps of the maturation chain. Both
disappear with loss rate c. States w3 tð Þ and w tð Þ represent
circulating ANC, which disappear from the blood with rate

constant k. Because of the maturation times in the
hematopoietic chain, a change in the progenitor levels

resulted in a change in ANC w3 tð Þ only after a time s. The
rate constant x is not structurally identifiable and therefore

was set at x ¼ 1 day$1.
The production rate of cells from the progenitor cells

was assumed to be regulated by a homeostatic mechanism

U w tð Þ;u½ &, controlled by the mature neutrophil levels, w tð Þ
with parameter u:

U w tð Þ;u½ & ¼ w tð Þ=w0½ &$u ð5Þ

Circulating in the central compartment, anticancer drug

levels c1 tð Þ were assumed to result in exposure y tð Þ that

disturbs the neutrophil lineage by a direct hematological
toxicity mechanism with parameters m:

N y tð Þ; m½ & ¼ m Dð Þ ' y Dð Þ tð Þ þ m Eð Þ ' y Eð Þ tð Þ
þ m0 ' y Dð Þ tð Þ ' y Eð Þ tð Þ ð6Þ

Finally, the stimulation mechanism of G-CSF (4) is

represented by the function M z tð Þ; l½ & with parameters l.
Typical parameter values were obtained by modeling the

ANC profiles from the phase I study of Viens et al. [18].

This study was conducted on 65 patients receiving the drug

combination every 3 weeks without G-CSF support.
Hematological toxicity profiles from the above dataset

were used to estimate parameters involved in the interface

model and the dynamic model. For example, Fig. 2 illus-
trates the fitted model of a given profile. The averages of

estimated parameters for all available profiles were con-

sidered as typical values (shown in Table 1). The simulated
ANC profiles using these typical values were in agreement

with profiles reported in the literature by several investi-

gations [18, 24, 26, 30–41].

PK/PD of Granulocyte Colony-Stimulating Factor

The dynamic safety model (4) includes the effect of con-

comitant administration of G-CSF growth factors [42, 43]

administered by subcutaneous route. The PKs of G-CSF
were described by the following compartment model:

where z1 tð Þ and z2 tð Þ are concentrations in the central and

peripheral compartment, respectively. The G-CSF elimi-
nation rate hF ' z3 tð Þ was controlled by the z3 tð Þ state of the
third differential equation. This equation uses the mature

ANC levels w tð Þ as input, a constant rate h0 elimination,
and an enzymatic-like mechanism describing the associa-

tion of z3 tð Þ with z1 tð Þ. This association yields a complex

z4 tð Þ with rate hF , which is dissociated to z3 tð Þ and z1 tð Þ
with rate hB. The distribution volume of the central com-

partment was denoted VZ1. The input function t tð Þ was a
fractional Weibull-type absorption with parameters g1 and

g2, and was given by the integral form:

Z t

0

t t0ð Þdt0 ¼
XnG

k¼1

dk ' 1$ exp $ g1 ' t $ !tkð Þ½ &g2½ &½ & ð8Þ

implying nG G-CSF doses dk administered at times !tk.
Finally, the stimulation mechanism (4) was:

M z tð Þ; l½ & ¼ 1þ l0 ' 1$ exp $ z1 tð Þ=l1ð Þl2½ &½ & ð9Þ

Therefore, the chain w tð Þ ! hF ' z3 tð Þ½ & ! z1 tð Þ !
M z tð Þ; l½ & resulted in an homeostatic mechanism on w tð Þ

_z1 tð Þ ¼ $hF ' z3 tð Þ ' z1 tð Þ $ h12 ' z1 tð Þ $ z2 tð Þ½ & þ t tð Þ=VZ1 z1 0ð Þ ¼ 0
_z2 tð Þ ¼ h21 ' z1 tð Þ $ z2 tð Þ½ & z2 0ð Þ ¼ 0

_z3 tð Þ ¼ w tð Þ $ h0 ' z3 tð Þ $ hF ' z3 tð Þ ' z1 tð Þ þ hB ' z4 tð Þ z3 0ð Þ ¼ w0=h0
_z4 tð Þ ¼ hF ' z3 tð Þ ' z1 tð Þ $ hB ' z4 tð Þ z4 0ð Þ ¼ 0

ð7Þ

Fig. 2 ANC simulated profile fitted to experimental data for one
patient receiving combination chemotherapy. ANC profile (solid line)
and the associated 95 % confidence bounds (dashed lines) for three
consecutive cycles for one patient receiving 75 mg/m2 of docetaxel
and 90 mg/m2 of epirubicin from the phase I study of Viens et al.
[18]. Full circles represent the experimental data. ANC absolute
neutrophil count

C. Meille et al.
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Scheduling optimization

Table 1 Optimized dosing regimens for the first treatment cycle at each dose level

Before protocol 
amendment After protocol amendment

Day Time (h) 85 mg 100 mg 90 mg 100 mg 110 mg

D1

0
DTX 55 DTX 60

1 DTX 60 DTX 60 DTX 50
2
3
4
5
6

DTX 30 DTX 40
7
8
9 DTX 30 DTX 40 DTX 30
10
11

D2

24
25
26 DTX 30
27
28
29
30

EPI 85 EPI 80
31 EPI 80 EPI 80
32
33
34
35

D3

48 EPI 20 EPI 10 EPI 20 EPI 8049
50
51
52
53
54
55 EPI 30
56
57

Gray areas represent drug administration. Thick lines represent sampling times

Breast Cancer Res Treat (2016) 156:331–341 335
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S Opt. S Opt. S Opt.

S = standard, Opt = optimized

• PK: popPK previous studies 
• PD toxicity: estimated from previous phase I study 
• PD efficacy: in vitro cytotoxicity + fit to previously 

published clinical studies

Optimization

Based on a fixed schedule and at each level of the dose

range, the model was challenged to determine, for each drug,
the distribution of the total amount to be administered in

order to minimize the average tumor mass while complying

with ANC and non-hematological toxicity constraints. The
proposed method enabled us to compute individualized

MTD on 2-week cycles while controlling toxicities.

2.3 Optimization of the Administration Protocol

Obtaining the theoretical optimal input function is complex

because drug dosing is constrained by the route of

administration [9, 10]. This can be achieved by minimizing
an objective function with respect to a chosen class of input

functions. In these circumstances, the initial constrained

optimal control problem is converted into a corresponding
parameter optimization problem allowing computation of

the best doses d!:

d! ¼ argmin
1

T

ZT

0

n t; d; t!ð Þ % dt

2

4

3

5 ðProblemAÞ

which, when associated with the schedule t! in the

administration protocol u t; d!; t!ð Þ, led to the minimal
average value of tumor size over an entire cycle while

satisfying the hematological constraints (10–13). This

formulation then corresponds to a classical constrained
non-linear optimization problem.

2.4 Individualization of Model Parameters

Several authors proposed Bayesian approaches to identify

patient parameters and next optimizing dosing regimens
[11–15], but the presence of several parameters in the model

lowers the reliability of Bayesian estimation. To overcome

this, only the most sensitive parameters in the PK (1) and
dynamic model (3–9) were individualized, and the remain-

ing parameters were fixed at typical values. The selection of

the most sensitive parameters was based on the analysis of

sensitivity profiles oc1 tð Þ
ox and ow tð Þ

ox for each parameter x in the

PK and dynamic model, respectively. Extreme-valued pro-
files indicated the most sensitive parameters and the most

informative sampling times for measuring c1 tð Þ and w tð Þ,
and therefore estimating the sensitive parameters. No indi-
vidualization of efficacy model was carried out. The prior

term in the Bayesian estimator was assumed to be Gaussian,

centered on typical values and associated with interindivid-
ual variability set at a fixed level.

This procedure thus enables the combination treatment

to be both optimal and individualized because it solved the
optimization problem (Problem A) and used estimated

parameters for each patient, respectively.

2.5 Static Safety Modeling

The static safety model establishes relationships between
doses and probability for graded non-hematological toxic-

ity [16]. In the present study, doses were increased fol-

lowing predefined escalation levels. The DLT in the static
safety model was defined as a logical combination of two

types of graded toxicity: mucositis (MUC) and hand–foot

syndrome, vomiting, or asthenia (ONE). MUC and ONE
were involved in DLT either jointly (‘and’) or individually

(‘or’) with grades 2 or 3 following:

DLT ¼ G3 MUCð Þ or G3 ONEð Þ or G2 MUCð Þ and G2 ONEð Þ½ '

Patients were included sequentially according to the

3 ? 3 rule. Evaluation ofDLTwas carried out for all patients
already included in the trial up to the present dose level and

for all grades of MUC and ONE observed during the first

three cycles. The expected risk ofDLT for the next dose level
was communicated to the clinical team for dose-escalation

decision making. Usually, an acceptable DLT risk is\0.33.

2.6 Numerical Aspects

The constrained non-linear programming algorithm
implemented in the fmincon function of MATLAB [17]

was used to solve the optimization problem (A), subjected

to constraints 10–13. State equations of the dynamic model
(4) are non-linear differential-difference equations of the

retarded type. They were solved numerically by a Runge–

Kutta method of second- to third-order implemented in the
dde23 function of MATLAB.

3 Results

3.1 Drugs

Drugs were administered intravenously during the first

3 days following 2-week cycles for six planned cycles. To
improve densification, G-CSF was administered as daily

administrations of 150 lg/m2/day, from days 5–12.

3.2 Optimization of the Administration Protocol

This optimization was carried out specifically for the first
cycle of dosing and was obtained from typical parameter

values presented in Tables 1 and 2. The ANC levels and

times involved in the hematological constraints (10–13)

were set at WD ¼ 0:2 Gcells % L(1, TU ¼ 3 days,

WU ¼ 1 Gcells % L(1, and W0 ¼ 1:5 Gcells % L(1. Total

doses were delivered during the first nD ¼ 3 days of the
cycle. Compared with the standard dosing scheme [18],

Revisiting Dosing Regimen Using PK/PD Mathematical Modeling

under toxicity constraints

Parameter estimation

Meille et al. (Iliadis), Clin Pharmacokinet, 2016
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Individualization of parameter estimates

deviations from these theoretical sampling times were
allowed and were reported. Bayesian estimation was per-

formed for the most sensitive PK and PD parameters. This

estimation has used a statistical prior distribution that was
centered on typical values and associated with large

interindividual variability. For the dynamic model, several

lag-times s ¼ 2; 3; 4; 5 days were systematically tested in
the Bayesian estimation to select the best one.

As an example, Table 4 presents PK and PD observa-

tions and model parameters for a patient receiving the

highest dose of 110 mg. Figure 1 illustrates the patient’s
ANC profile when the optimized dosing regimen was

applied for four consecutive cycles.

For all patients enrolled in the study, no adjustment in
number, scheduling or infusion dosing during cycle two

and onwards were necessary to control neutropenia, sug-
gesting that typical parameter values were sufficient to

achieve tolerable regimens of cancer therapy until the

MTD was reached.

4 Discussion

The proposed method involved several components and

used extensive modeling to optimize constrained dosing
regimens: the PK component to administer the drug, the PD

efficacy component to optimize the dosing regimen, and

the PD safety component to manage toxicity constraints.
For a given drug schedule, the dosing regimen algorithm

calculated optimal doses that could not have been found

intuitively. Interestingly, our algorithm proposed the
administration of docetaxel first and epirubicin 1 day later,

resulting in an inverse sequence compared with standard

practices [18]. Individual adjustments of single anticancer
agent doses based on drug monitoring and PK/PD models

have been previously reported [19–21]; however, the con-

cept of drug regimen entirely driven prospectively by a
mathematical model to optimize efficacy/toxicity balance

has not been previously described. The second innovation

of this strategy is the conjunction of a densified and

Table 4 Pharmacokinetic and pharmacodynamic observations (upper frame) and estimated model parameters (lower frame) for a patient
receiving the highest dose of 110 mg

Observations

Pharmacokinetic t hð Þ 5 51 70

c Dð Þ ng $mL%1
! "

26:1 11:5 6:4

c Eð Þ ng $mL%1
! " & 27:7 12:9

Pharmacodynamic t dayð Þ 0 3:9271 5:9375 7:9375 9:9375 12:896

w Gcells $ L%1
! "

2 2:6 6:3 0:6 10:5 13:4

Estimations

Pharmacokinetic Docetaxel V
Dð Þ

1 ¼ 2:938 0:196ð Þ L k
Dð Þ
31 ¼ 1:204 0:089ð Þ day%1

Epirubicin V
Eð Þ

1 ¼ 9:380 1:552ð Þ L k
Eð Þ
31 ¼ 1:818 0:337ð Þ day%1

Pharmacodynamic Absolute neutrophil
count

s ¼ 2:5 $ð Þ day k ¼ 2:113 0:087ð Þ day%1

VZ1 ¼ 1:184ð0:060ÞL $m%2 a Dð Þ ¼ 4:570 0:281ð Þ day%1

t sampling time, c observed concentration of drugs, w observed neutrophil level, other symbols are defined in legends of Tables 1 and 2

Standard error of the mean is reported in parentheses

& indicates an empty cell

$ indicates a fixed-value parameter

Fig. 1 ANC profile and experimental data for one patient receiving
combination chemotherapy at the highest dose. ANC profile (solid
line) and the associated 95 % confidence bounds (dashed lines) for
four consecutive cycles for a patient receiving the highest dose of
110 mg. The first 2 weeks correspond to the patient identification
phase (full circles) followed by three other cycles for prediction and
confirmation (open circles). ANC absolute neutrophil count

Revisiting Dosing Regimen Using PK/PD Mathematical Modeling



Other model-based trials

safety–efficacy multiscale model describing the PK/
PD relationships between docetaxel and epirubicin, 
allowing the best in silico drug-dosing regimen (that 
is, docetaxel first and epirubicin 1 day later, a sequence 
opposite to that usually performed with these drugs) for 
each patient to be tested in a phase Ib trial101. To date, 
17 patients have been recruited and the proposed regimen 
was both well tolerated, and achieved a response rate of 
45%, a median progression-free survival of 10.4 months 
and a median survival of 54.6 months, which compares 
favourably to the results reported in initial publications of 
the docetaxel and epirubicin combination102–108.

Planning metronomic chemotherapy. The role of metro-
nomic chemotherapy in the treatment of cancer remains 
to be fully determined109. Metronomic chemotherapy is a 
paradigm that illustrates how changes in dose and sched-
ule can alter the mechanisms of action of drugs — for 
example, canonical cytotoxic agents can have antiangio-
genic or immune-stimulating effects, or both109. A better 
understanding of metronomics might be derived from 
mathematical modelling studies110, and computational 
approaches can facilitate comparison of the efficacy 
of conventional versus metronomic regimens. Because of 
the innumerable permutations for repeated, low-dose 
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Figure 4 | Example of PK/PD simulation to optimize a vinorelbine treatment regimen. The empirical metronomic 
regimen, incorporating a 50 mg fixed dose of vinorelbine on days 1, 3 and 5 (D1-D3-D5 50 mg) of a 7-day cycle (left panels), 
can provide substantial clinical benefit to many patients; however, mathematical modelling has helped to identify an 
alternative dynamic dosing schedule (right panels) of 30 mg, 60 mg and 30 mg on days 1, 2 and 4 (D1-D2-D4 30-60-30), 
respectively, which was predicted to achieved a higher antiproliferative efficacy (lower panels), while displaying the same 
safety profile based on absolute neutrophil count (middle panels)112. Shading represents confidence intervals. Permission 
obtained from Springer International Publishing © Barbolosi, D. GV�CN��%CPEGT�%JGOQVJGT��2JCTOCEQN� 74, 647–652 (2014).
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• Metronomic vinorelbine in NSCLC (NCT02555007) 

• Combination of radiotherapy and immune-checkpoint inhibition 
(NCT03509584)

Barbolosi et al., Nat Rev Clin Oncol, 2016  
Ciccolini et al. (Benzekry), J Clin Oncol: Precision Oncology, 2020

Surprisingly, in this study, all drugs were administered
concomitantly at fixed dosing. This combination failed to
exhibit significant efficacy in terms of progression-free
survival, and thus, the conclusion was that adding atezo-
lizumab to standard of care for maintenance in mCRC
showed no benefit.13 Actually, this conclusion may sound
peremptory because it is not possible to knowwhether or not
different dosing or scheduling with exactly the same drugs
would have performed better. For instance, the combination
of the CDK4/6 inhibitor abemaciclib and anti–PD-L1 showed
that only slight changes in sequencing (ie, 7-day shift) led to
striking differences in antitumor efficacy in mouse models.14

Similar critical impact of timing has been demonstrated
when combining anti–PD-1 and anti–OX-4015 or when
combining RT and IODs.16 Sequences could have a major,
yet largely underestimated influence on efficacy and
should therefore be carefully defined when setting up
combinatorial clinical trials with IODs, especially because

the immunomodulating properties of cytotoxics are both
drug and dose dependent.17

ARE PK/PD RELATIONSHIPS REALLY FLAT WITH IMMUNE
CHECKPOINT INHIBITORS?

Although the tumor-mediated drug disposition phenome-
non can blur the picture when trying to understand the
relationships between drug levels, clearance values, and
tumor shrinkage with IODs, exposure-effect relationships
have already been evidenced with the anti-CTLA4 ipili-
mumab, anti–PD-1 nivolumab, and anti–PD-L1 avelumab,
to name a few.18-20 In this respect, the fact that almost
all exploratory trials testing combinatorial strategies lack
pharmacokinetics support to evaluate the variability
in exposure levels among patients is another major
weakness.21,22 Before concluding that a combination is
ineffective, checking that exposure level with IODs was
enough to ensure a correct target engagement could get rid
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FIG 1. Mechanistic learning. Mechanistic models are mathematical constructs able to simulate pathophysiologic processes. To do so, they depend on
mathematical parameters that need to be calibrated from data. Data available in clinical settings are typically of 3 types. Baseline data can be composed of
demographic, clinical, pathologic (eg, histologic type), molecular (eg, genetic mutations), or biologic (eg, blood counts) variables. Such covariates can be
used as inputs in machine learning algorithms to predict individual values of the parameters. Longitudinal data can include quantities such as tumor size
measurements, pharmacokinetics, immune monitoring, seric biomarkers, or circulating DNA. Mixed-effects statistical learning is well adapted to integrate
these. Survival data (eg, progression-free or overall survival) can also be modeled with a mechanistic basis (instead of biologically agnostic survival analysis
based on, eg, Cox regression), using adapted, survival learning statistical methods. In turn, this allows simulating and optimizing safety and efficacy profiles
of candidate therapeutic regimens for combinatorial trials. CT1, first chemotherapy; CT2, second chemotherapy; mTKI, maintenance tyrosine kinase
inhibitor; PS, performance status; TGI, tumor growth inhibition; TKI, tyrosine kinase inhibitor.
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The QUANTIC Project

QUANTitative modeling combined to statistical learning to understand and predict resistance to Immune-checkpoint inhibition in 
non-small cell lung Cancer



Conclusions

• Pharmacometrics is an important field with demonstrated clinical utility of mathematical/
statistical models 

• Often neglected and not sufficiently appreciated 

• Advanced statistical techniques of parameter estimation 

• Model-based adaptive dosing is routinely done for some cytotoxics (e.g. Busulfan, 
cisplatin) and most TKIs  

• Not for all (under development: immune-checkpoint mAbs) 

• Limitation: needs PK measurements 

• First model-driven phase I/II dose-escalation study 

• Shows encouraging results 

• Limitation: small number of patients, not randomized
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Axis 2: Optimizing combinatorial strategies 
Cytotoxics + antiangiogenics

Therapeutic question 

What is the optimal time gap between 
administration of bevacizumab and cytotoxic 

chemotherapy?
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also known as anti-vascular therapy, could starve a tumor by
choking off its blood supply. Once a unique marker for all
tumor vessels (new as well as established) is identified, sev-
eral available ‘smart’ strategies can be used to destroy these
vessels20,21. Progress has been made towards identifying these
markers22,23, but their uniqueness and consistency have yet
to be demonstrated. If these markers are present in normal
vessels, the vessels might be damaged by the therapy. If
these markers are present only on some tumor vessels and
not others, the tumors without markers might relapse.
Perhaps anti-angiogenic approaches, used in conjuction
with anti-vascular agents, can prevent post-therapy relapse.

Is there a role, then, for the passive targeting of tumor vas-
culature? Chemotherapy and radiation therapy may serve
this function by killing cancer cells that compress tumor
vessels, thereby increasing blood flow24. Like a fraction of
cancer cells in a tumor, a fraction of endothelial cells in
tumor vessels proliferates rapidly. It seems reasonable that
these rapidly proliferating cells (endothelial cells, circulat-
ing endothelial precursors and cancer cells) will respond to
chemo- and radiation therapy. The endothelial cells are con-
sidered genetically stable and might not develop drug 
resistance—one rationale underlying low-dose chronic
chemotherapy. Chemotherapy may also target cancer cells
that are in the process of invading the vessel lumen and
being shed into the circulation. But, in general, chronic low-
dose chemotherapy alone has not led to long-term cure of
drug-resistant tumors2,3. Is this because tumor cells develop
mutations that allow them to survive in hypoxic environ-
ments5? Or is it because the epigenetic changes in endothe-
lial cells (such as enzyme induction or upregulation of a
receptor) lead to ‘resistance’? Or because the tumor exhausts
its supply of proliferating endothelial cells and the remain-
ing quiescent endothelial cells do not respond to cytotoxic
therapies alone? In the latter case, cure might require com-
bining cytotoxic therapies with anti-angiogenic therapy.
Anti-angiogenic therapy might make endothelial cells more
sensitive to cytotoxic therapies and/or vice versa. Anti-an-
giogenic therapy might also increase the efficiency of the
tumor vasculature, increasing the delivery of drugs or oxy-
gen6,13,14. Though not explicitly acknowledged, there is a
danger that the increased availability of nutrients might fa-
cilitate tumor growth and contribute to the delayed regres-

sion often observed after anti-angiogenic therapy.
The decision of whether and when to stop pruning the

tumor vasculature depends on the objective of the anti-an-
giogenic therapy. If the goal is to deprive the tumor of its
blood supply, therapy must continue until the vasculature
no longer functions. If the goal is to improve vascular effi-
ciency, treatments must be fine-tuned accordingly. The del-
icate balance between too many and too few endothelial
and perivascular cells warrants careful attention to the
scheduling and dosing of combination therapies. Optimal
scheduling may take advantage of a window of opportunity
created by anti-angiogenic therapy wherein cytotoxic agents
will have maximal access to cancer cells. This hypothesis is
supported by the successful outcome from the combination
of TNP-470 with cytotoxic therapies2,6. On the other hand,
suboptimal scheduling may lead to antagonism between cy-
totoxic and anti-angiogenic therapies. This has happened in
cases where TNP-470 was combined with radiation therapy25

or chemotherapy26.
A major challenge in anti-angiogenesis clinical trials is the

optimization of dose and schedule for combination therapy
for individual patients. Although serial tumor biopsies can
provide the necessary information, they are difficult to ob-
tain. Therefore, imaging technologies and surrogate markers
that permit specific phenotypic changes to be quantified
during anti-angiogenic therapy (such as vessel diameter,
vessel tortuosity, vessel density, vascular permeability, par-
tial pressure of oxygen or interstitial pressure) are urgently
needed. Concerted efforts are underway to adapt magnetic
resonance imaging, computerized tomography, positron
emission tomography, ultrasound and various optical tech-
niques. As well as providing a global measure of the vascular
phenotype, these techniques need to map the functional
heterogeneities in a tumor. Similarly, surrogate markers of
angiogenesis in blood would not only facilitate dosing and
dose scheduling but also identify high-risk individuals who
would benefit from preventive anti-angiogenic therapy27. In
the meantime, interstitial fluid pressure, which is relatively
easy to measure with minimally invasive and inexpensive
technology8,24, may serve as an indicator of the normality of
a tumor’s vascular physiology. And, indeed, decreased inter-
stitial fluid pressure has recently been shown to be a good
prognostic factor in cervical cancer patients28.

The original rationale for combination therapy was to de-
stroy two separate cell populations: endothelial cells and
cancer cells. Since these two populations are interdepen-
dent, destroying the vasculature reduces the opportunity to

Fig. 1 Schematic of changes in tumor vasculature during the course of
anti-angiogenic therapy. a, Normal vasculature, composed of mature ves-
sels and maintained by the perfect balance of pro- and anti-angiogenic
molecules, might not change during the course of anti-angiogenic ther-
apy. b, Abnormal tumor vasculature, composed largely of immature ves-
sels with increased permeability, vessel diameter, vessel length, vessel
density, tortuosity and interstitial fluid pressure, compromises the delivery
of therapeutics and nutrients. c, Judiciously applied direct or indirect anti-
angiogenic therapies might prune immature vessels, leading to more nor-
malized tumor vasculature. This network should be more efficient for the
delivery of therapeutics and nutrients. d, Rapid pruning of, or coagulation
in, tumor vasculature might reduce the vasculature to the point that it is
inadequate to support tumor growth and might lead to tumor dormancy.
This is the ultimate goal of anti-angiogenic/anti-vascular therapy.
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• (H4) In the absence of data monitoring the state of the tumor vasculature, the 

antiangiogenic effect of bevacizumab is not explicitly modeled. 

(H5) Beside its antiangiogenic activity, bevacizumab increases the drugs delivery by 

improving the vasculature quality � (32). The dynamics of this improvement is 

assumed to follow the bevacizumab concentration, delayed by a time shift � for the 

normalization to occur. The magnitude of the improvement is controlled by a parameter 

�.The above assumptions are translated into the following system of nonlinear ordinary 

differential equations: 

��
�� = � − � ln �

�7
� − ���� � � = 0 = �E

� � = 	1 + �� � − �
��)
�� = ���� − ��) �) � = 0 = 0
��G
�� = � �) − �G 	 �G � = 0 = 0
��H
�� = � �G − �H �H � = 0 = 0
� = � + �) + �G + �H	

 

The initial size �E was set to 7.04 x 106 photons/second considering that 80 000 cells 

were injected (experiment-1) and a previously established conversion ratio of �7 =	1 

cell » 88 photons/second (33). 

Statistical	model	and	parameters	estimation	

For description of the inter-animal variability we used the nonlinear mixed-effects 

statistical framework (34). It consists in assuming a distribution of the parameters within 

the animal population, taken here to be lognormal for each parameter. Importantly, 

these were the same for all treatment groups. The structural model above depends on 

6 parameters (�, �, �, �, �, �).	 After an initial sensitivity analysis showing that not all of 

these parameters were identifiable from our data set, we reduced this to the 4 
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rank test showed a significant difference between all groups
(P< 0.0001). Further log-rank tests showed that each treat-
ment group was significantly different than the control arm
(P< 0.001). Moreover, the sequential administration in the
“beva then chemo 4 days” arm had greater survival median
and was significantly different than concomitant in the
“beva1 chemo” (P5 0.0485) and reversed in the “chemo
then beva 4 days” arms (P5 0.0496). Conversely, no signif-
icant difference was observed between the “beva1 chemo”
and the “chemo then beva 4 days” arms (P5 0.631).

Mathematical modeling predicted an optimal time delay
of 3 days between the administration of bevacizumab
and pemetrexed1 cisplatin
The selected model is a modified version of the Gompertz
model with a delay in the treatment effects32 and inclusion of
a dynamic variable Q accounting for the vasculature quality
and, thus, the normalization effect. See the Materials and
Methods section for a detailed description of the model equa-
tion, data fit, and parameters’ estimation method. Population
analysis yielded the median parameter and interanimal vari-
ability estimates reported in Table 1 with good relative stan-
dard errors. Goodness-of-fit was assessed by visual
predictive check plots (Figure 3a-d), which demonstrated a

good agreement between the model simulations and the
experimental data (see residual analysis in Supplementary
Figure S7). Individual simulations also demonstrated the
ability of our model to reproduce tumor growth dynamics for
each mouse (Supplementary Figure S8).
The model with parameters calibrated on the experimen-

tal data allowed us to perform simulations varying the time
lag between the administrations of bevacizumab and the
pemetrexed-cisplatin doublet. The criterion for quantification
of efficacy was the area under the tumor growth curve.
Delays ranging from 1–10 days were tested. Simulation
results showed that a 2.8-days delay between bevacizumab
and chemotherapy achieved greater reduction in tumor
sizes, with a difference of 76.8% in tumor size as compared
with concomitant scheduling (Figure 4a-c). Our quantifica-
tion of the normalization dynamics also predicted that a
delay of 8 days would perform substantially worse, with a
difference of only 54.3% compared with concomitant admin-
istration (Figure 4c). Quantification of the interanimal vari-
ability of the model parameters using our population
approach allowed to simulate the resulting interanimal vari-
ability of the optimal interdrug administration gap. The opti-
mal gap ranged from 0–10 days with median of 2.8 days
and standard deviation of 1.84 days (Figure 4d).

(a) (b)

(c) (d)

Figure 3 Visual predictive check for experiment one population analysis. (a–d) Visual predictive check plots. Circles: experimental
data. Stars with broken lines: median data. Solid lines: tumor growth simulated curves using median parameter values, dashed lines:
95% intervals for interanimal variability, generated from the simulation of 1,000 virtual animals with parameters distributed according to
the distribution estimated by the mixed-effects fit. Beva, bevacizumab; Chemo, chemotherapy.
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(P< 0.001). Moreover, the sequential administration in the
“beva then chemo 4 days” arm had greater survival median
and was significantly different than concomitant in the
“beva1 chemo” (P5 0.0485) and reversed in the “chemo
then beva 4 days” arms (P5 0.0496). Conversely, no signif-
icant difference was observed between the “beva1 chemo”
and the “chemo then beva 4 days” arms (P5 0.631).

Mathematical modeling predicted an optimal time delay
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The selected model is a modified version of the Gompertz
model with a delay in the treatment effects32 and inclusion of
a dynamic variable Q accounting for the vasculature quality
and, thus, the normalization effect. See the Materials and
Methods section for a detailed description of the model equa-
tion, data fit, and parameters’ estimation method. Population
analysis yielded the median parameter and interanimal vari-
ability estimates reported in Table 1 with good relative stan-
dard errors. Goodness-of-fit was assessed by visual
predictive check plots (Figure 3a-d), which demonstrated a

good agreement between the model simulations and the
experimental data (see residual analysis in Supplementary
Figure S7). Individual simulations also demonstrated the
ability of our model to reproduce tumor growth dynamics for
each mouse (Supplementary Figure S8).
The model with parameters calibrated on the experimen-

tal data allowed us to perform simulations varying the time
lag between the administrations of bevacizumab and the
pemetrexed-cisplatin doublet. The criterion for quantification
of efficacy was the area under the tumor growth curve.
Delays ranging from 1–10 days were tested. Simulation
results showed that a 2.8-days delay between bevacizumab
and chemotherapy achieved greater reduction in tumor
sizes, with a difference of 76.8% in tumor size as compared
with concomitant scheduling (Figure 4a-c). Our quantifica-
tion of the normalization dynamics also predicted that a
delay of 8 days would perform substantially worse, with a
difference of only 54.3% compared with concomitant admin-
istration (Figure 4c). Quantification of the interanimal vari-
ability of the model parameters using our population
approach allowed to simulate the resulting interanimal vari-
ability of the optimal interdrug administration gap. The opti-
mal gap ranged from 0–10 days with median of 2.8 days
and standard deviation of 1.84 days (Figure 4d).
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Figure 3 Visual predictive check for experiment one population analysis. (a–d) Visual predictive check plots. Circles: experimental
data. Stars with broken lines: median data. Solid lines: tumor growth simulated curves using median parameter values, dashed lines:
95% intervals for interanimal variability, generated from the simulation of 1,000 virtual animals with parameters distributed according to
the distribution estimated by the mixed-effects fit. Beva, bevacizumab; Chemo, chemotherapy.
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Imbs et al., Benzekry, CPT: Pharmacometrics and Systems Pharmacology, 2017
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