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𝐶𝑆 𝑡 = 𝐶𝑆
0𝑒− 𝑔−𝑠 𝑡

𝐶𝑅 𝑡 = 𝐴 𝑒− 𝑔−𝑠 𝑡 + 𝐵𝑒𝑟 𝑡

𝐶𝑆 𝑡 + 𝐶𝑅 𝑡 = 𝐴′ 𝑒− 𝑔−𝑠 𝑡 + 𝐵𝑒𝑟 𝑡

Solution

ሶ𝐶𝑆
ሶ𝐶𝑅

=
𝑠 − 𝑔 0
𝑔 𝑟

𝐶𝑆
𝐶𝑅

,     
𝐶𝑆
𝐶𝑅 𝑡=0

=
𝐶𝑆
0

𝐶𝑅
0

Deterministic ODE system depends on 𝒔, 𝒓, 𝒈 𝑪𝑺
𝟎, 𝑪𝑹

𝟎

positive (Ex) s=-0.05/day, r=0.01/day, g=0.02/day

𝐶𝑆 𝐶𝑅
𝑔

𝑟𝑠

• Dynamic variables:
• 𝑪𝑺: sensitive cell population

• 𝑪𝑹: resistant cell population

• 𝑪𝑺 + 𝑪𝑹: total tumor size, disease burden

• Parameters:
• 𝒔 < 𝟎, 𝒓 > 𝟎: net proliferation rates for 𝐶𝑆 and𝐶𝑅

(birth minus death, 𝒔 = 𝒃𝒔 − 𝒅𝒔, 𝒓 = 𝒃𝒓 − 𝒅𝒓)

• 𝒈 > 𝟎: rate or resistance acquisition due to 
therapy

Fundamental modeling structure of a heterogeneous cell population

2. Model for 2 drugs
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• Dynamic variables:

• 𝑅𝐴: resistant to Drug A sensitive to Drug B

• 𝑅𝐵: resistant to Drug B sensitive to Drug A

• 𝑅𝐴 + 𝑅𝐵: total tumor size, disease burden

• Parameters:
• 𝒔𝑨 = 𝑏𝐴

𝑠 − 𝑑𝐴
𝑠 , 𝒓𝑨 = 𝑏𝐴

𝑟 − 𝑑𝐴
𝑟 , 𝒈𝑨 for Drug A

• 𝒔𝑩 = 𝑏𝐵
𝑠 − 𝑑𝐵

𝑠 , 𝒓𝑩 = 𝑏𝐵
𝑟 − 𝑑𝐵

𝑟 , 𝒈𝑩 for Drug B

• Initial population makeup: 𝐴𝑝𝐵0 = 𝑅𝐴
0/𝑅𝐵

0

• Drug Switches
• (e.g.) (A-drug, 1 week) → (B-drug, 1.5 week) → …Drug A Drug B Drug A Drug B

𝑅𝐵 𝑠𝐴𝑅𝐴𝑟𝐴
𝑔𝐴

𝑅𝐵 𝑟𝐵𝑅𝐴𝑠𝐵
𝑔𝐵

With Drug B

With Drug A

Modeling of collateral sensitive network

2. Model for 2 drugs
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Tmax

(Blue) Drug A alone
(Red) Drug B alone

(Used parameters) 

𝑠𝐴 = 𝑠𝐵 = −0.09, 𝑟𝐴 = 𝑟𝐵 = 0.008, 

𝑔𝐴 = 𝑔𝐵 = 0.001, 𝑅𝐴
0, 𝑅𝐵

0 = 0.1,0.9

1. Tmax : clinical intuition

The longest time period with Drug A lasting effective. 

𝑻𝒎𝒂𝒙 𝒔𝑨, 𝒓𝑨, 𝒈𝑨 , 𝑨𝒑𝑩𝟎

=

𝑙𝑜𝑔
𝑔𝐴 − 𝑠𝐴 𝑟𝐴 − 𝑠𝐴

𝑟𝐴 𝑔𝐴 1 + 𝐴𝑝𝐵0 + 𝐴𝑝𝐵0 𝑟𝐴 − 𝑠𝐴
𝑔𝐴 + 𝑟𝐴 − 𝑠𝐴

,

which exists if and only if (iff) 𝐴𝑝𝐵0 < 𝑠𝐴/𝑟𝐴 , 
where 𝐴𝑝𝐵0 = 𝑅𝐴 0 /𝑅𝐵 0 .

Analysis: strategic drug-switch timing

2. Model for 2 drugs
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Tmin

(Blue) Drug A alone
(Red) Drug B alone
(Dashed magenta) arbitrary switch

Tmax

(Used parameters) 

𝑠𝐴 = 𝑠𝐵 = −0.09, 𝑟𝐴 = 𝑟𝐵 = 0.008, 

𝑔𝐴 = 𝑔𝐵 = 0.001, 𝑅𝐴
0, 𝑅𝐵

0 = 0.1,0.9

1. Tmax : clinical intuition

The longest time period with Drug A lasting effective. 

𝑻𝒎𝒂𝒙 𝒔𝑨, 𝒓𝑨, 𝒈𝑨 , 𝑨𝒑𝑩𝟎

=

𝑙𝑜𝑔
𝑔𝐴 − 𝑠𝐴 𝑟𝐴 − 𝑠𝐴

𝑟𝐴 𝑔𝐴 1 + 𝐴𝑝𝐵0 + 𝐴𝑝𝐵0 𝑟𝐴 − 𝑠𝐴
𝑔𝐴 + 𝑟𝐴 − 𝑠𝐴

,

which exists if and only if (iff) 𝐴𝑝𝐵0 < 𝑠𝐴/𝑟𝐴 , 
where 𝐴𝑝𝐵0 = 𝑅𝐴 0 /𝑅𝐵 0 .

2. Tmin suggests improvement

Population decreases even faster by switch from Drug A to 
Drug B at or after:

𝑻𝒎𝒊𝒏 𝒔𝑨, 𝒓𝑨, 𝒈𝑨 , 𝒔𝑩, 𝒓𝑩 , 𝑨𝒑𝑩𝟎

=

𝑙𝑜𝑔
𝑟𝐴 − 𝑠𝐴 𝑟𝐵 − 𝑠𝐴 + 𝑔𝐴 𝑟𝐴 + 𝑟𝐵 − 𝑠𝐴 − 𝑠𝐵

𝑔𝐴 + 𝐴𝑝𝐵0 𝑔𝐴 + 𝑟𝐴 − 𝑠𝐴 𝑟𝐴 − 𝑠𝐵
𝑔𝐴 + 𝑟𝐴 − 𝑠𝐴

,

which exists iff 𝐴𝑝𝐵0 < 𝑟𝐵 − 𝑠𝐴 /(𝑟𝐴 − 𝑠𝐵)

Condition: 𝑇𝑚𝑖𝑛 < 𝑇𝑚𝑎𝑥 iff 𝑟𝐴𝑟𝐵 < 𝑠𝐴𝑠𝐵

Analysis: strategic drug-switch timing

2. Model for 2 drugs



9/53

1. Tmax : clinical intuition

The longest time period with Drug A lasting effective. 

𝑻𝒎𝒂𝒙 𝒔𝑨, 𝒓𝑨, 𝒈𝑨 , 𝑨𝒑𝑩𝟎

=

𝑙𝑜𝑔
𝑔𝐴 − 𝑠𝐴 𝑟𝐴 − 𝑠𝐴

𝑟𝐴 𝑔𝐴 1 + 𝐴𝑝𝐵0 + 𝐴𝑝𝐵0 𝑟𝐴 − 𝑠𝐴
𝑔𝐴 + 𝑟𝐴 − 𝑠𝐴

,

which exists if and only if (iff) 𝐴𝑝𝐵0 < 𝑠𝐴/𝑟𝐴 , 
where 𝐴𝑝𝐵0 = 𝑅𝐴 0 /𝑅𝐵 0 .

2. Tmin suggests improvement

Population decreases even faster by switch from Drug A to 
Drug B at or after:

𝑻𝒎𝒊𝒏 𝒔𝑨, 𝒓𝑨, 𝒈𝑨 , 𝒔𝑩, 𝒓𝑩 , 𝑨𝒑𝑩𝟎

=

𝑙𝑜𝑔
𝑟𝐴 − 𝑠𝐴 𝑟𝐵 − 𝑠𝐴 + 𝑔𝐴 𝑟𝐴 + 𝑟𝐵 − 𝑠𝐴 − 𝑠𝐵

𝑔𝐴 + 𝐴𝑝𝐵0 𝑔𝐴 + 𝑟𝐴 − 𝑠𝐴 𝑟𝐴 − 𝑠𝐵
𝑔𝐴 + 𝑟𝐴 − 𝑠𝐴

,

which exists iff 𝐴𝑝𝐵0 < 𝑟𝐵 − 𝑠𝐴 /(𝑟𝐴 − 𝑠𝐵)

Condition: 𝑇𝑚𝑖𝑛 < 𝑇𝑚𝑎𝑥 iff 𝑟𝐴𝑟𝐵 < 𝑠𝐴𝑠𝐵

(Blue) Drug A alone
(Red) Drug B alone
(Dashed magenta) arbitrary switch
(Black) instantaneous switch

TmaxTmin

(Used parameters) 

𝑠𝐴 = 𝑠𝐵 = −0.09, 𝑟𝐴 = 𝑟𝐵 = 0.008, 

𝑔𝐴 = 𝑔𝐵 = 0.001, 𝑅𝐴
0, 𝑅𝐵

0 = 0.1,0.9

Analysis: strategic drug-switch timing

2. Model for 2 drugs
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• Population makeup: 
𝐴𝑝𝐵 𝑡 ≔ 𝑅𝐴(𝑡)/𝑅𝐵(𝑡)

• 𝐴𝑝𝐵 𝑇𝑚𝑖𝑛
𝐴 = 𝐴𝑝𝐵 𝑇𝑚𝑖𝑛

𝐵 =
𝒓𝑩−𝒔𝑨

𝒓𝑨−𝒔𝑩
≔ 𝑨𝒑𝑩∗,       

• 𝐴𝑝𝐵 𝑇𝑚𝑎𝑥
𝐴 =

−𝒔𝑨

𝒓𝑨
, 𝐴𝑝𝐵 𝑇𝑚𝑎𝑥

𝐵 =
𝒓𝑩

−𝒔𝑩

• Drug effect at 𝑨𝒑𝑩: 

ቚ
d

dt
𝑃 𝑡

𝑡=0

𝑠𝑖,𝑟𝑖,𝑔𝑖 ,𝑨𝒑𝑩𝟎
,          𝑃 𝑡 = 𝑅𝐴 𝑡 + 𝑅𝐵 𝑡 ,          𝑃 0 = 1 (fixed)

Analysis: population makeup at Tmin and Tmax

when 𝒓𝑨𝒓𝑩 < 𝒔𝑨𝒔𝑩

𝐴𝑝𝐵∗ =
𝑟𝐵 − 𝑠𝐴
𝑟𝐴 − 𝑠𝐵

−𝑠𝐴
𝑟𝐴

𝑟𝐵
−𝑠𝐵

𝐴𝑝𝐵

𝑃 decreases with Drug B

𝑃 decreases with Drug A

Drug B is betterDrug A is better

2. Model for 2 drugs
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Optimal control consists of two stages of therapy

(Stage 1; shaping) until Tmin , “better” drug alone

(Stage 2; adaptive therapy) combination of the 
two drugs switched in turn with a definite ratio 
in duration, k, i.e., Drug A for t days and Drug B
for k times t days.

𝑘(′) 𝑠𝐴, 𝑟𝐴, 𝑔𝐴 , 𝑠𝐵 , 𝑟𝐵 , 𝑔𝐵 , Δ𝑡

𝐴𝑝𝐵∗

𝐴𝑝𝐵

Drug B

𝐴𝑝𝐵Δ𝑡
𝐷𝑟𝑢𝑔 𝐵

Δ𝑡

𝒌 Δ𝑡

Δ𝑡/𝒌′

Δ𝑡

𝐴𝑝𝐵Δ𝑡
𝐷𝑟𝑢𝑔 𝐴

Drug A

lim
Δ𝑡→0

𝑘= lim
Δ𝑡→0

𝑘′

=
𝑟𝐴−𝑠𝐴 𝑟𝐵−𝑠𝐴 +𝑔𝐴 𝑟𝐴+𝑟𝐵−𝑠𝐴−𝑠𝐵 𝑟𝐴−𝑠𝐵

𝑟𝐴−𝑠𝐵 𝑟𝐵−𝑠𝐵 +𝑔𝐵 𝑟𝐴+𝑟𝐵−𝑠𝐴−𝑠𝐵 𝑟𝐵−𝑠𝐴
: = 𝒌∗

(Blue) Tmin switch (optimal)
(Red) Tmax switch
(Solid) Total: 𝑅𝐴 + 𝑅𝐵
(Dotted) 𝑅𝐴
(Dashed) 𝑅𝐵
(Gray area) Stage 1
(White area) Stage 2

0 20 40 60 80 100
0.00
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Total population (P)

P
o
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u
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ti
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m
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k
e

u
p

(l
o
g

(A
p
B

))

𝐴𝑝𝐵∗

(Used parameters) 

𝑠𝐴, 𝑠𝐵 = −0.09 2,1 , 𝑟𝐴, 𝑟𝐵 = 0.008 1,2 , 

𝑔𝐴, 𝑔𝐵 = 0.001 0.75,1.25 , 𝑅𝐴
0, 𝑅𝐵

0 = 0.1,0.9

2. Model for 2 drugs
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2. Model for 2 drugs

• Differential system on Stage 2:

• Stage 2 starts at Tmin: 

• Populations on stage 2

𝑃 𝑡 + 𝑇𝑚𝑖𝑛 = 𝑃 𝑇𝑚𝑖𝑛 𝐸𝑥𝑝 𝜆 𝑡

for 𝑃 ∈ 𝑅𝐴, 𝑅𝐵, 𝑅𝐴 + 𝑅𝐵

where

Simple analytic description of Stage 2 of the optimal control

Drug A for 𝑘∗ Δ𝑡 -long period 
ሶ𝑅𝐴
ሶ𝑅𝐵

=
𝑟𝐵 𝑔𝐵
0 𝑠𝐵 − 𝑔𝐵

𝑅𝐴
𝑅𝐵

≔ 𝔻𝑨
𝑅𝐴
𝑅𝐵

,  

Drug B for Δ𝑡 -long period 
ሶ𝑅𝐴
ሶ𝑅𝐵

=
𝑠𝐴 − 𝑔𝐴 0
𝑔𝐴 𝑟𝐴

𝑅𝐴
𝑅𝐵

≔ 𝔻𝑩
𝑅𝐴
𝑅𝐵

Drug A for 𝑘∗ Δ𝑡 -long period 

…

ሶ𝑹𝑨

ሶ𝑹𝑩

=
𝒌∗

𝟏 + 𝒌∗
𝔻𝑨 +

𝟏

𝟏 + 𝒌∗
𝔻𝑩

𝑹𝑨

𝑹𝑩

as Δ𝑡 → 0

𝜆 = −
𝑟𝐴𝑟𝐵 − 𝑠𝐴𝑠𝐵

𝑟𝐴 + 𝑟𝐵 + 𝑠𝐴 + 𝑠𝐵

Details of the proof is shown in 
[Yoon et al., bulletin of 
mathematical biology, 2018] 

𝐴𝑝𝐵 𝑇𝑚𝑖𝑛 = 𝐴𝑝𝐵∗
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3. Model for n drugs

N dynamic variables:

• 𝑅𝑖: resistant to Drug i

• 𝑅𝑖−1 (or 𝑅𝑁): sensitive to Drug i (or Drug 1)

• 𝑅𝑗: neutral to Drug i (𝑗 ∉ 𝑖 − 1, 𝑖 )

N x 5 parameters:

• Proliferation rates: 𝒑𝒓
𝑖 > 0, 𝒑𝒔

𝑖 < 0, 𝒑𝟎
𝒊 for 

Drug i

• Transition rates: 𝒈𝒔
𝒊 , 𝒈𝟎

𝒊 for Drug i

Collateral Sensitivity cycle of length N: 

Drug 1 → Drug 2 → ⋯ → Drug N → Drug 1 → ⋯

R1

Ri-2

Ri

RN

Ri+1 Ri-1

⋱

⋮

R1

R2

R3

R4

Total

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

Time

R
e
la

ti
v
e

p
o
p

u
la

ti
o

n
Drug 1 Drug 2 Drug 4Drug 3 Drug 1 Drug 2

𝒑𝟎
𝒊

𝒑𝒔
𝒊

𝒑𝒓
𝒊

𝒈𝟎
𝒊

𝒈𝒔
𝒊



14/53

3. Model for n drugs

Dynamics of cell populations under Drug i: 
𝒅𝒗

𝒅𝒕
=𝓜 𝒊 𝒗 where 𝑣 = 𝑅1, … , 𝑅𝑁

𝑇

With

• 𝜆𝑟
𝑖 , 𝜆𝑠

𝑖 , 𝜆0
𝑖 = (𝑝𝑟

𝑖 , 𝑝𝑠
𝑖 − 𝑔𝑠

𝑖 , 𝑝0
𝑖 − 𝑔0

𝑖 )

• 𝑔𝑠
𝑖 =

𝑔𝑠
𝑖

𝑁−2

ℳ 𝑖 =

𝜆0
𝑖 0 ⋯
0 ⋱ ⋱
⋮ ⋱ ⋱

0 𝑔𝑠
𝑖 0

⋮ ⋮ ⋮
0 ⋮ ⋮

⋮ ⋱
0 ⋯ ⋯
𝑔0
𝑖 ⋯ ⋯

𝜆0
𝑖 𝑔𝑠

𝑖 ⋮

0 𝜆𝑠
𝑖 0

𝑔0
𝑖 0 𝜆𝑟

𝑖

⋯ ⋯ ⋯ 0
⋮
⋮

⋯ ⋯
𝑔𝑠
𝑖 ⋯

⋮
⋯ 0
⋯ 𝑔𝑠

𝑖

0 ⋯ ⋯
⋮

0 𝑔𝑠
𝑖 0

⋮ ⋮ ⋮
⋮
0 ⋯ ⋯

⋮ ⋮ ⋮

0 𝑔𝑠
𝑖 0

𝜆0
𝑖 0
⋱ ⋱

⋯ 0
⋱ ⋮

⋱
⋯ ⋯

⋱ 0
0 𝜆0

𝑖

← i-th row

← (i-1)-th row

(i-1)-th column
↓
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3. Model for n drugs

2- drugs n-drugs

Drug switch time (𝑇𝑚𝑖𝑛) Yes No

Population makeup with same 
drug effect (𝐴𝑝𝐵∗ or 𝑣∗)

Yes Yes

Relative drug period (𝑘∗) Yes No

Metaphor problem 𝑎𝑥 = 𝑏
(analytically 
solvable)

𝑎𝑥 + 𝑏𝑥 = 𝑐 (analytically 
proved to have a solution; 
numerically solvable)

Availability of analytic derivations

Total cell population with optimal therapy
𝑑𝑣

𝑑𝑡
= ℳ argmin

1≤𝑖≤𝑁
𝑒𝑓𝑖 𝑣

Discretely solvable by finding the best drug at every discrete time point and solve 𝑣′ = ℳ 𝑗 𝑣
until the next point.

where 𝑒𝑓𝑖 𝑡 = 𝒫𝑖 ∙ 𝑣 𝑡
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3. Model for n drugs

Start; 
𝑡 ← 0

end

Calculate 𝑒𝑓𝑖(𝑡) s, and 
fine best drug(s): 

𝐼𝑏𝑒𝑠𝑡 = 𝑖 𝑒𝑓𝑖 𝑡 ≤
𝑒𝑓𝑘 𝑡 , 1 ≤ 𝑘 ≤ 𝑁}

Run the chosen drug

Randomly choose one 
best drug from 𝐼𝑏𝑒𝑠𝑡

Time 
is up?

yes
no

𝑡 ← 𝑡 + Δ𝑡

← Diagram to run optimal therapy over 
a discrete timeline

↑ Example of optimal therapy simulation 
compared to a non-optimal therapy
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3. Model for n drugs

Example with 4 of symmetric drugs

𝑝𝑟,𝑝𝑠, 𝑝0 = 0.2, −0.7,0.1 , 𝑔𝑠, 𝑔0 = 0.1,0.05 ,

𝑅1
0, 𝑅2

0, 𝑅3
0, 𝑅4

0 = 0.45,0.3,0.05,0.2

Example 4 of asymmetric drugs

𝑝𝑟
1𝑝𝑠

1, 𝑝0
1 = 0.5, −0.7,0.0 , 𝑔𝑠

1, 𝑔0
1 = 0.01,0.005 ,

𝑝𝑟
2𝑝𝑠

2, 𝑝0
2 = 0.1, −0.7,0.0 , 𝑔𝑠

2, 𝑔0
2 = 0.01,0.01 ,

𝑝𝑟
3𝑝𝑠

3, 𝑝0
3 = 0.2, −0.3,0.0 , 𝑔𝑠

3, 𝑔0
3 = 0.05,0.05 ,

𝑝𝑟
4𝑝𝑠

4, 𝑝0
4 = 0.1, −0.2,0.0 , 𝑔𝑠

4, 𝑔0
4 = 0.001,0.0005 ,

𝑅1
0, 𝑅2

0, 𝑅3
0, 𝑅4

0 = 0.05,0.15,0.2,0.6
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3. Model for n drugs

R1

R2

R3

R4

Total

0 2 4 6 8 10
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An example with symmetric drugs

𝑝𝑟,𝑝𝑠, 𝑝0 = 0.2,−0.7,0.1 , 𝑔𝑠, 𝑔0 = 0.1,0.05 , 𝑅1
0, 𝑅2

0, 𝑅3
0, 𝑅4

0 = 0.45,0.3,0.05,0.2

𝑣∗ = 𝜆 1,… , 1 𝑇

Decay rate: 
𝑝𝑟+𝑝𝑠+ 𝑁−2 𝑝0

𝑁

shaping adaptive therapy Drug 1

Drug 2

Drug 3

Drug 4

Stage 1 Stage 2 Stage 3 Stage 4
0.0

0.2

0.4

0.6

0.8

1.0
F

ra
c
ti
o

n
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3. Model for n drugs

An example with asymmetric drugs

𝑝𝑟
1𝑝𝑠

1, 𝑝0
1 = 0.5, −0.7,0.0 , 𝑔𝑠

1, 𝑔0
1 = 0.01,0.005 , 𝑝𝑟

2𝑝𝑠
2, 𝑝0

2 = 0.1, −0.7,0.0 , 
𝑔𝑠
2, 𝑔0

2 = 0.01,0.01 , 𝑝𝑟
3𝑝𝑠

3, 𝑝0
3 = 0.2, −0.3,0.0 , 𝑔𝑠

3, 𝑔0
3 = 0.05,0.05 ,

𝑝𝑟
4𝑝𝑠

4, 𝑝0
4 = 0.1, −0.2,0.0 , 𝑔𝑠

4, 𝑔0
4 = 0.001,0.0005 , 𝑅1

0, 𝑅2
0, 𝑅3

0, 𝑅4
0 =

0.05,0.15,0.2,0.6

𝑣∗ = 𝜆
𝒫1 𝑇

⋮
𝒫𝑁 𝑇

−1
1
⋮
1

Decay rate:??

R1

R2

R3

R4

Total

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Time

R
e
la

ti
v
e

p
o
p

u
la

ti
o

n

shaping adaptive therapy
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3. Model for n drugs

An example with asymmetric drugs

𝑝𝑟
1𝑝𝑠

1, 𝑝0
1 = 0.5, −0.7,0.0 , 𝑔𝑠

1, 𝑔0
1 = 0.01,0.005 , 𝑝𝑟

2𝑝𝑠
2, 𝑝0

2 = 0.1, −0.7,0.0 , 
𝑔𝑠
2, 𝑔0

2 = 0.01,0.01 , 𝑝𝑟
3𝑝𝑠

3, 𝑝0
3 = 0.2, −0.3,0.0 , 𝑔𝑠

3, 𝑔0
3 = 0.05,0.05 ,

𝑝𝑟
4𝑝𝑠

4, 𝑝0
4 = 0.1, −0.2,0.0 , 𝑔𝑠

4, 𝑔0
4 = 0.001,0.0005 , 𝑅1

0, 𝑅2
0, 𝑅3

0, 𝑅4
0 =

0.05,0.15,0.2,0.6

Drug 1

Drug 2

Drug 3

Drug 4

Stage 1 Stage 2 Stage 3 Stage 4
0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti
o

n Stage 1

Stage 2

Stage 3

Stage 4

0 2 4 6 8 10

0.0

0.5

1.0

1.5

Time

E
n

tr
o

p
y

Within each stage, since the entropy graph is flat on each stage, drugs are periodically 
switching with relative period from the bar chart.
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3. Model for n drugs

Drug 1

Drug 2

Drug 3

Drug 4

Stage 1 Stage 2 Stage 3 Stage 4
0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti
o

n

Drug 1

Drug 2

Drug 3

Drug 4

Stage 1 Stage 2 Stage 3 Stage 4
0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti
o

n

R1

R2

R3

R4

Total

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Time

R
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e
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ti
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n

R1

R2

R3

R4

Total

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Time
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e
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u
la

ti
o

n

Instantaneous drug switch is supposed 
to be consistent with the linear 
combination of the dynamics with 
corresponding intensities (as 
numerically tested).

Drug 1 for 𝑓1 Δ𝑡 -long period,  
Drug 2 for 𝑓2 Δ𝑡 -long period
…
Drug N for 𝑓𝑁 Δ𝑡 -long period 
Drug 1 for 𝑓1 Δ𝑡 -long period
…

𝒗 = 

𝒊=𝟏

𝑵

𝒇𝒊ℳ 𝒊 𝒗

Symmetric drugs Asymmetric drugs
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4. Optimal regimen without parameters

1. Subpopulations are know (e.g., cell free DNA):

2. Only total population is know (e.g., Prostate Specific Atigen):

Three equations from the explicit solutions 

of the ODE system, for 𝑅𝑖, 𝑅𝑖−1, σ𝑗∉ 𝑖−1,𝑖 𝑅𝑗

Calibration of 
5 parameters

Hypotheses with mutation per proliferation

𝑔0
𝑖 = 𝜶𝟎𝑝0

𝑖 and 𝑔𝑠
𝑖 = 𝜶𝒔𝑝𝑠

𝑖

Computational algorithm?? 
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4. Optimal regimen without parameters

start

end

Calculate 𝑃𝑜𝑝𝑖s and 
𝐷𝑒𝑟𝑖s

Run the best drug(s)

Find the level of 
intermediate drug 

effect (𝑒𝑓∗)

Choose good drug(s) 
(not just the best; 𝝐)

Time 
is up?

Still more efficient 
than other drug(s)?

yes

yes

no

no

Testing period

Optimal therapy 
period

Algorithm to prescribe optimal 

regimen without parameters
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4. Optimal regimen without parameters

R1

R2

R3

R4

Total

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Time

R
e
la

ti
v
e

p
o
p

u
la

ti
o

n

Good consistency with 𝜖 = 0.01 Errors of the algorithm over a range of 𝜖

Algorithm to prescribe optimal 

regimen without parameters
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• Population structure

Conclusions

• Optimal prescription without 
drug parameters known

• Numerically figured out 
optimal control

• Population makeup with 
balanced drug effects

𝐴𝑝𝐵∗ −𝑠𝐴
𝑟𝐴

𝑟𝐵
−𝑠𝐵

𝐴𝑝𝐵

𝑃 decreases with B-drug

𝑃 decreases with A-drug

B-drug is betterA-drug is better

𝑑𝑣

𝑑𝑡
= ℳ argmin

1≤𝑖≤𝑁
𝑒𝑓𝑖 𝑣
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Future work

• Considerations on the third type of cells (Areeba Khalid, Adelphi)Compartment Model 
 

 

Drug 𝑨              Drug 𝑩 

 

          rA  

𝑅𝐴  

ℎ𝑂𝐴  

 
𝑟𝐴  

𝑅𝐵  

𝑅𝑂  

𝑠𝐴 

𝑔𝐴  𝑔𝐵  

𝑅𝐴 𝑅𝐵  

𝑠𝐵 𝑟𝐵  

𝑅𝑂  

ℎ𝐵𝑂  

𝑜𝐴  

ℎ𝐴𝑂  ℎ𝑂𝐵  

𝑜𝐵  

𝑑𝑅𝐴
𝑑𝑡

=  𝑟𝐴 𝑅𝐴  +    𝑔𝐴 𝑅𝐵 +  ℎ𝑂𝐴  𝑅𝑂 ,                                         

 
𝑑𝑅𝐵
𝑑𝑡

=  𝑠𝐴 𝑅𝐵   −  𝑔𝐴 𝑅𝐵 −  ℎ𝐵𝑂  𝑅𝐵 ,                                          

 
𝑑𝑅𝑂
𝑑𝑡

=  𝑜𝐴 𝑅𝑂   −  ℎ𝑂𝐴 𝑅𝑂 +  ℎ𝐵𝑂  𝑅𝐵 ;   

𝑑𝑅𝐴
𝑑𝑡

=  𝑠𝐵 𝑅𝐴  −    𝑔𝐵  𝑅𝐴 −  ℎ𝐴𝑂  𝑅𝐴 ,                                        

 
𝑑𝑅𝐵
𝑑𝑡

=  𝑐  +  𝑔𝐵 𝑅𝐴 −  ℎ𝑂𝐵  𝑅𝑂 ,                                         

 
𝑑𝑅𝑂
𝑑𝑡

=  𝑜𝐵 𝑅𝑂   −  ℎ𝑂𝐵 𝑅𝑂 +  ℎ𝐴𝑂  𝑅𝐴 ; 
• Find combinations of collaterally sensitive factors from RNA (miRNA), DNA, network 

data

• Interdisciplinary implementation of the optimal therapy in the automatic cell 
culturing device, Mobidostat.

• Expansion of the model considering spatial distribution of microenvironment.
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Thank you all!!

Theory Division

Math & CS at Adelphi
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Thank you! Questions?


