Modeling collaterally sensitive drug cycles: shaping heterogeneity to allow adaptive therapy

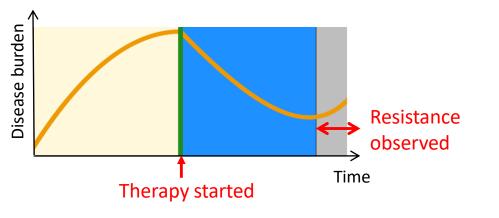
Nara Yoon (*presenter*)^{1,2}, Robert Vander Velde^{3,4}, Nikhil Krishnan^{2,5}, Andriy Marusyk³, Jake Scott^{2,5}

¹Adelphi University, Garden city, NY, THOR², Cleveland Clinic, Cleveland, OH ; ³Moffit Cancer Center, Tampa, FL, ⁴Univ. of South Florida, Tampa, FL, ⁵Sch. of Medicine, CWRU, Cleveland, OH ;

> CATMO2020 December 10, 2020, 11 am – 11:20 am

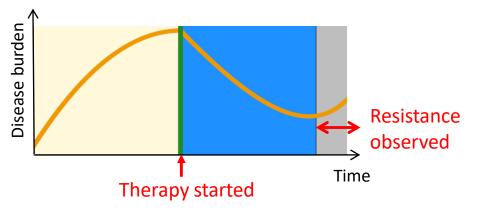
1. Background

Drug resistance

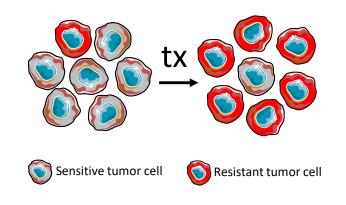


1. Background

Drug resistance

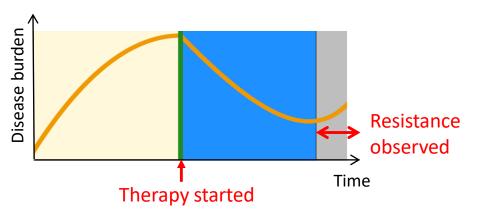


Dynamics of tumor heterogeneity

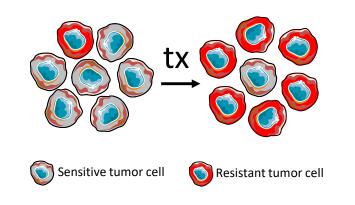


1. Background

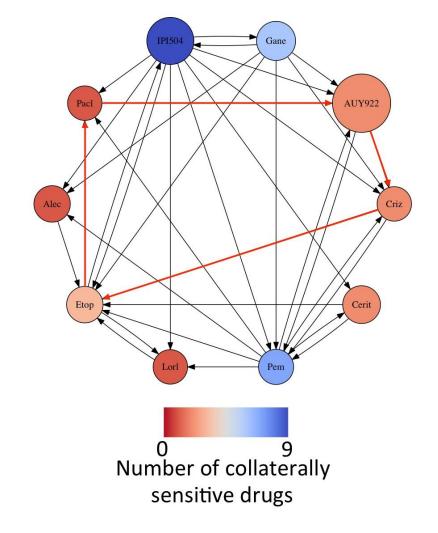
Drug resistance



Dynamics of tumor heterogeneity

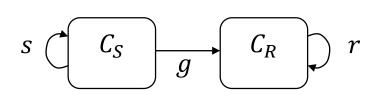


Collateral sensitivity



[Dhawan et al., Scientific Reports, 2017]

Fundamental modeling structure of a heterogeneous cell population



- Dynamic variables:
 - C_S: sensitive cell population
 - C_R: resistant cell population
 - $C_S + C_R$: total tumor size, disease burden
- Parameters:
 - s < 0, r > 0: net proliferation rates for C_S and C_R (birth *minus* death, $s = b_s - d_s, r = b_r - d_r$)
 - *g* > 0: rate or resistance acquisition due to therapy

<u>Deterministic ODE system</u> depends on $\{s, r, g | C_S^0, C_R^0\}$

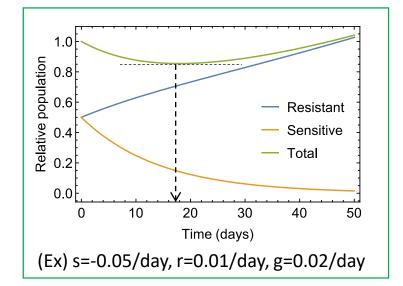
$$\begin{pmatrix} \dot{C}_{S} \\ \dot{C}_{R} \end{pmatrix} = \begin{pmatrix} s - g & 0 \\ g & r \end{pmatrix} \begin{pmatrix} C_{S} \\ C_{R} \end{pmatrix}, \quad \begin{pmatrix} C_{S} \\ C_{R} \end{pmatrix}_{t=0} = \begin{pmatrix} C_{S}^{0} \\ C_{R}^{0} \end{pmatrix}$$

Solution

$$C_{S}(t) = C_{S}^{0}e^{-(g-s)t}$$

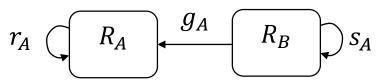
$$C_{R}(t) = A e^{-(g-s)t} + Be^{rt}$$

$$C_{S}(t) + C_{R}(t) = A' e^{-(g-s)t} + Be^{rt}$$
positive

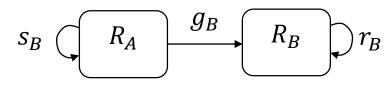


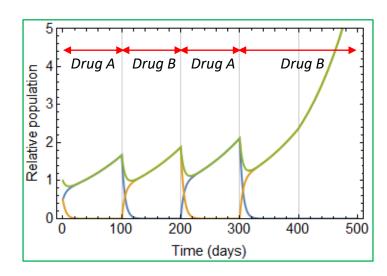
Modeling of collateral sensitive network

With Drug A



With Drug B





- Dynamic variables:
 - R_A : resistant to *Drug A* sensitive to *Drug B*
 - R_B : resistant to *Drug B* sensitive to *Drug A*
 - $R_A + R_B$: total tumor size, **disease burden**
- Parameters:

• {
$$s_A = b_A^s - d_A^s$$
, $r_A = b_A^r - d_A^r$, g_A } for Drug A
• { $s_B = b_B^s - d_B^s$, $r_B = b_B^r - d_B^r$, g_B } for Drug B

- Initial population makeup: $ApB_0 = R_A^0/R_B^0$
- Drug Switches
 - (e.g.) (A-drug, 1 week) \rightarrow (B-drug, 1.5 week) \rightarrow ...

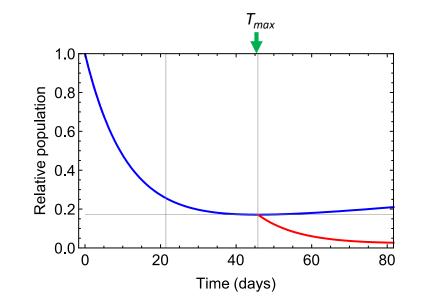
Analysis: strategic drug-switch timing

1. *T_{max}* : clinical intuition

The longest time period with *Drug A* lasting effective.

 $T_{max}(\{s_{A}, r_{A}, g_{A}\}, ApB_{0})$ $= \frac{log \left[\frac{(g_{A} - s_{A})(r_{A} - s_{A})}{r_{A}(g_{A}(1 + ApB_{0}) + ApB_{0}(r_{A} - s_{A}))} \right]}{g_{A} + r_{A} - s_{A}}$

which exists if and only if (iff) $ApB_0 < |s_A/r_A|$, where $ApB_0 = R_A(0)/R_B(0)$.



(Blue) Drug A alone (Red) Drug B alone

(Used parameters)

 $s_A = s_B = -0.09, r_A = r_B = 0.008,$ $g_A = g_B = 0.001, \{R_A^0, R_B^0\} = \{0.1, 0.9\}$

Analysis: strategic drug-switch timing

1. T_{max} : clinical intuition

The longest time period with *Drug A* lasting effective.

 $T_{max}(\{s_{A}, r_{A}, g_{A}\}, ApB_{0})$ $= \frac{log \left[\frac{(g_{A} - s_{A})(r_{A} - s_{A})}{r_{A}(g_{A}(1 + ApB_{0}) + ApB_{0}(r_{A} - s_{A}))} \right]}{g_{A} + r_{A} - s_{A}}$

which exists if and only if (iff) $ApB_0 < |s_A/r_A|$, where $ApB_0 = R_A(0)/R_B(0)$.

2. T_{min} suggests improvement

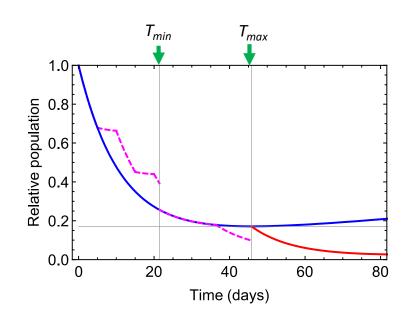
Population decreases even faster by switch from *Drug A* to *Drug B* at or after:

 $T_{min}(\{s_A, r_A, g_A\}, \{s_B, r_B\}, ApB_0)$

$$=\frac{\log\left[\frac{(r_{A}-s_{A})(r_{B}-s_{A})+g_{A}(r_{A}+r_{B}-s_{A}-s_{B})}{(g_{A}+ApB_{0}(g_{A}+r_{A}-s_{A}))(r_{A}-s_{B})}\right]}{g_{A}+r_{A}-s_{A}},$$

which exists iff
$$ApB_0 < |(r_B - s_A)/(r_A - s_B)|$$

Condition: $T_{min} < T_{max}$ iff $r_A r_B < s_A s_B$



(Blue) Drug A alone(Red) Drug B alone(Dashed magenta) arbitrary switch

(Used parameters)

$$s_A = s_B = -0.09, r_A = r_B = 0.008,$$

 $g_A = g_B = 0.001, \{R_A^0, R_B^0\} = \{0.1, 0.9\}$

Analysis: strategic drug-switch timing

1. T_{max} : clinical intuition

The longest time period with *Drug A* lasting effective.

 $T_{max}(\{s_{A}, r_{A}, g_{A}\}, ApB_{0})$ $= \frac{log \left[\frac{(g_{A} - s_{A})(r_{A} - s_{A})}{r_{A}(g_{A}(1 + ApB_{0}) + ApB_{0}(r_{A} - s_{A}))} \right]}{g_{A} + r_{A} - s_{A}}$

which exists if and only if (iff) $ApB_0 < |s_A/r_A|$, where $ApB_0 = R_A(0)/R_B(0)$.

2. T_{min} suggests improvement

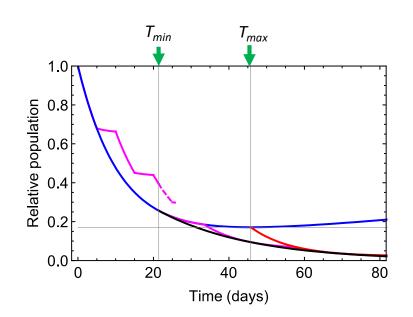
Population decreases even faster by switch from *Drug A* to *Drug B* at or after:

 $T_{min}(\{s_A, r_A, g_A\}, \{s_B, r_B\}, ApB_0)$

$$=\frac{\log\left[\frac{(r_{A}-s_{A})(r_{B}-s_{A})+g_{A}(r_{A}+r_{B}-s_{A}-s_{B})}{(g_{A}+ApB_{0}(g_{A}+r_{A}-s_{A}))(r_{A}-s_{B})}\right]}{g_{A}+r_{A}-s_{A}},$$

which exists iff
$$ApB_0 < |(r_B - s_A)/(r_A - s_B)|$$

Condition: $T_{min} < T_{max}$ iff $r_A r_B < s_A s_B$



(Blue) Drug A alone(Red) Drug B alone(Dashed magenta) arbitrary switch(Black) instantaneous switch

(Used parameters)

 $s_A = s_B = -0.09, r_A = r_B = 0.008,$ $g_A = g_B = 0.001, \{R_A^0, R_B^0\} = \{0.1, 0.9\}$

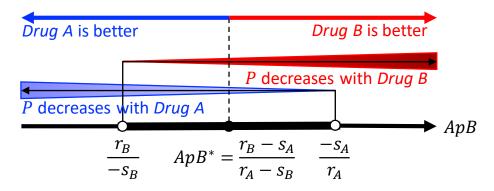
10/53

2. Model for 2 drugs

Analysis: population makeup at T_{min} and T_{max}

• Population makeup: $ApB(t) \coloneqq R_A(t)/R_B(t)$ • $ApB(T_{min}^A) = ApB(T_{min}^B) = \frac{r_B - s_A}{r_A - s_B} \coloneqq ApB^*,$ • $ApB(T_{max}^A) = \frac{-s_A}{r_A}, \quad ApB(T_{max}^B) = \frac{r_B}{-s_B}$ • Drug effect at ApB: $\frac{d}{dt}P(t)\Big|_{t=0}^{\{s_i, r_i, g_i\}, ApB_0}, \quad P(t) = R_A(t) + R_B(t), \quad P(0) = 1 \text{ (fixed)}$

when $r_A r_B < s_A s_B$

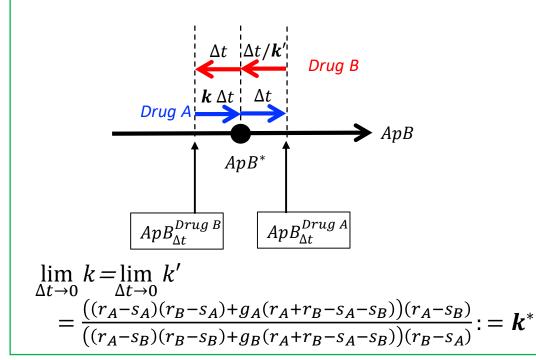


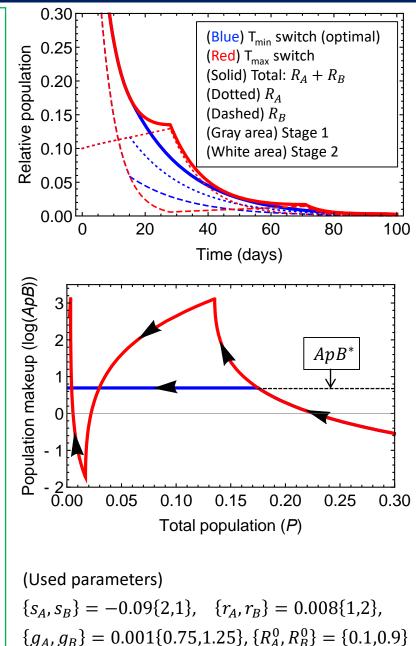
Optimal control consists of two stages of therapy

(*Stage 1; shaping*) until *T_{min}*, "better" drug alone

(*Stage 2; adaptive therapy*) combination of the two drugs switched in turn with a definite ratio in duration, *k*, i.e., *Drug A* for t days and *Drug B* for *k* times *t* days.

 $k^{(\prime)}(\{s_A, r_A, g_A\}, \{s_B, r_B, g_B\}, \Delta t)$





Simple analytic description of Stage 2 of the optimal control

• Differential system on *Stage 2*:

• Stage 2 starts at T_{min}:

 $ApB(T_{min}) = ApB^*$

• Populations on stage 2

$$P(t + T_{min}) = P(T_{min}) Exp(\lambda t)$$

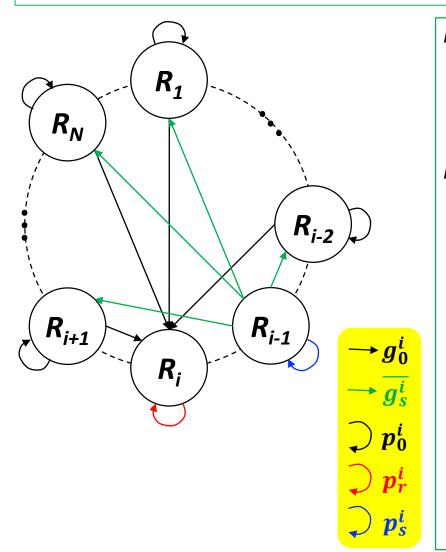
for $P \in \{R_A, R_B, R_A + R_B\}$

where $\lambda = -\frac{r_A r_B - s_A s_B}{r_A + r_B + s_A + s_B}$

Details of the proof is shown in [Yoon et al., bulletin of mathematical biology, 2018]

Collateral Sensitivity cycle of length N:

 $Drug \ 1 \rightarrow Drug \ 2 \rightarrow \cdots \rightarrow Drug \ N \rightarrow Drug \ 1 \rightarrow \cdots$

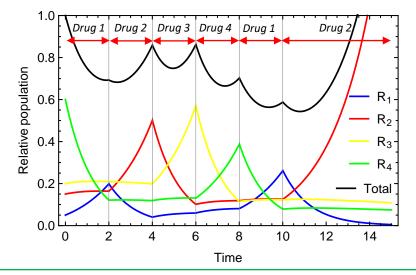


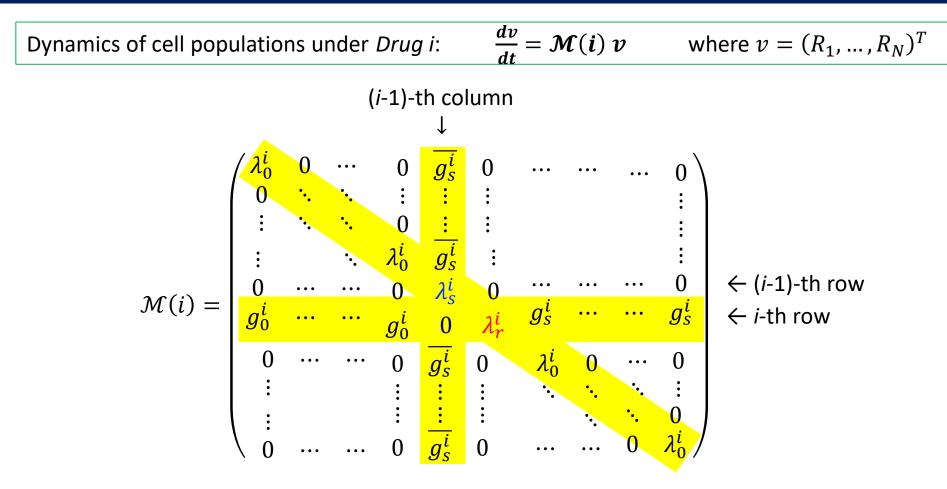
N dynamic variables:

- *R_i*: resistant to *Drug i*
- R_{i-1} (or R_N): sensitive to *Drug i* (or *Drug 1*)
- R_j : neutral to *Drug i* ($j \notin \{i 1, i\}$)

N x 5 parameters:

- Proliferation rates: $\{\pmb{p}_r^i > 0, \pmb{p}_s^i < 0, \pmb{p}_0^i\}$ for Drug i
- Transition rates: $\{m{g}_{s}^{i},m{g}_{0}^{i}\}$ for Drug i





With

• $\left(\lambda_r^i, \lambda_s^i, \lambda_0^i\right) = \left(p_r^i, p_s^i - g_s^i, p_0^i - g_0^i\right)$ • $\overline{g_s^i} = \frac{g_s^i}{N-2}$

Availability of analytic derivations

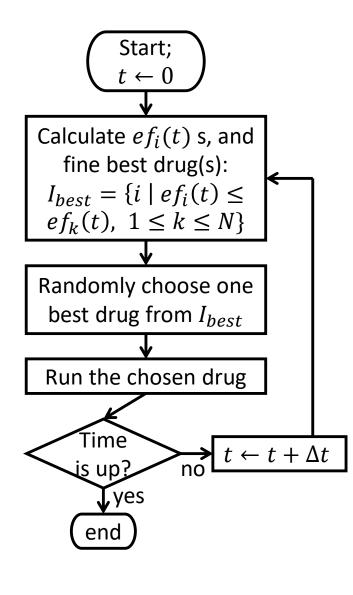
	2- drugs	n-drugs
Drug switch time (T_{min})	Yes	Νο
Population makeup with same drug effect (ApB^* or v^*)	Yes	Yes
Relative drug period (k^*)	Yes	No
Metaphor problem	$a^x = b$ (analytically solvable)	$a^{x} + b^{x} = c$ (analytically proved to have a solution; numerically solvable)

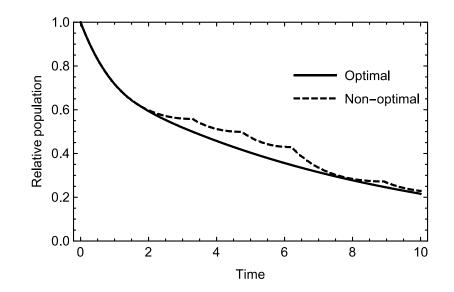
Total cell population with optimal therapy

$$\frac{dv}{dt} = \mathcal{M}\left(\underset{1 \le i \le N}{\operatorname{argmin}} ef_i\right) v$$

where $ef_i(t) = \mathcal{P}^i \cdot v(t)$

Discretely solvable by finding the best drug at every discrete time point and solve $v' = \mathcal{M}(j) v$ until the next point.





1 Example of optimal therapy simulation compared to a non-optimal therapy

← Diagram to run optimal therapy over a discrete timeline

Example with 4 of symmetric drugs

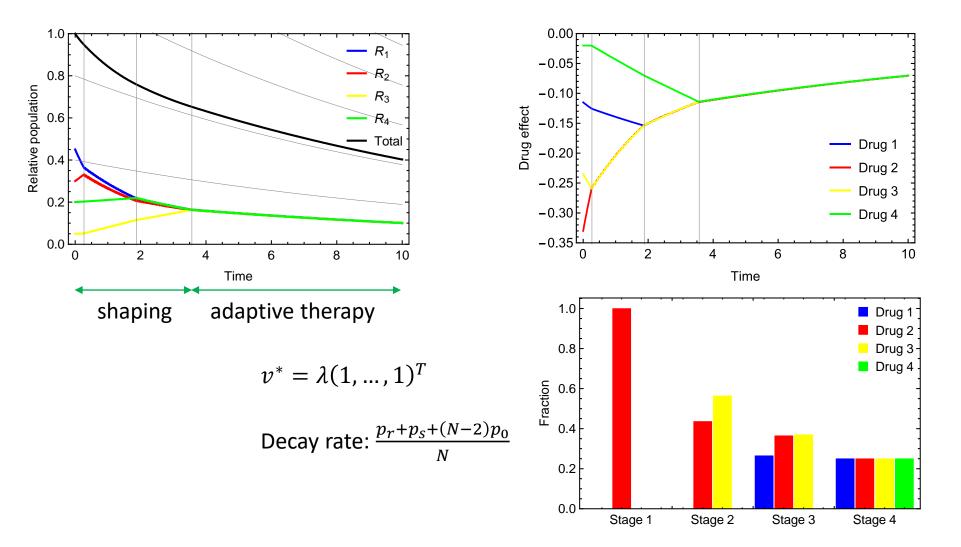
 $\{p_{r,}p_{s}, p_{0}\} = \{0.2, -0.7, 0.1\}, \{g_{s}, g_{0}\} = \{0.1, 0.05\}, \\ \{R_{1}^{0}, R_{2}^{0}, R_{3}^{0}, R_{4}^{0}\} = \{0.45, 0.3, 0.05, 0.2\}$

Example 4 of asymmetric drugs

 $\{p_r^1 p_s^1, p_0^1\} = \{0.5, -0.7, 0.0\}, \{g_s^1, g_0^1\} = \{0.01, 0.005\}, \\ \{p_r^2 p_s^2, p_0^2\} = \{0.1, -0.7, 0.0\}, \{g_s^2, g_0^2\} = \{0.01, 0.01\}, \\ \{p_r^3 p_s^3, p_0^3\} = \{0.2, -0.3, 0.0\}, \{g_s^3, g_0^3\} = \{0.05, 0.05\}, \\ \{p_r^4 p_s^4, p_0^4\} = \{0.1, -0.2, 0.0\}, \{g_s^4, g_0^4\} = \{0.001, 0.0005\}, \\ \{R_1^0, R_2^0, R_3^0, R_4^0\} = \{0.05, 0.15, 0.2, 0.6\}$

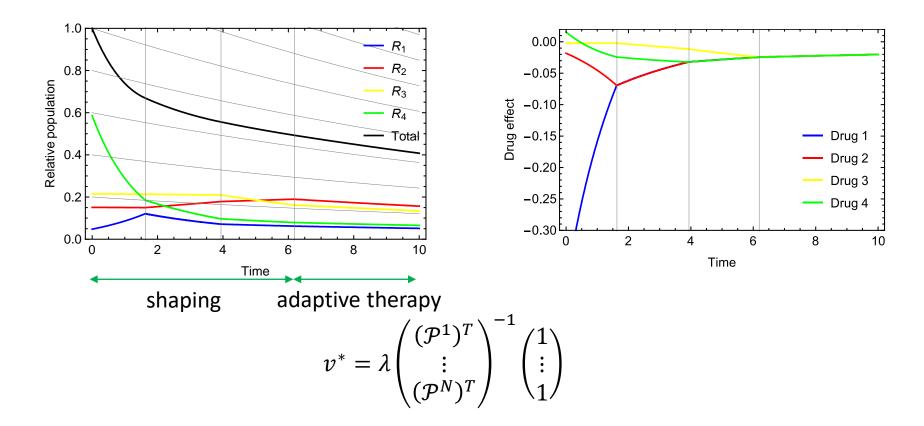
An example with symmetric drugs

 $\left\{p_{r,}p_{s},p_{0}\right\} = \left\{0.2,-0.7,0.1\right\}, \left\{g_{s},g_{0}\right\} = \left\{0.1,0.05\right\}, \left\{R_{1}^{0},R_{2}^{0},R_{3}^{0},R_{4}^{0}\right\} = \left\{0.45,0.3,0.05,0.2\right\}$



An example with *asymmetric* drugs

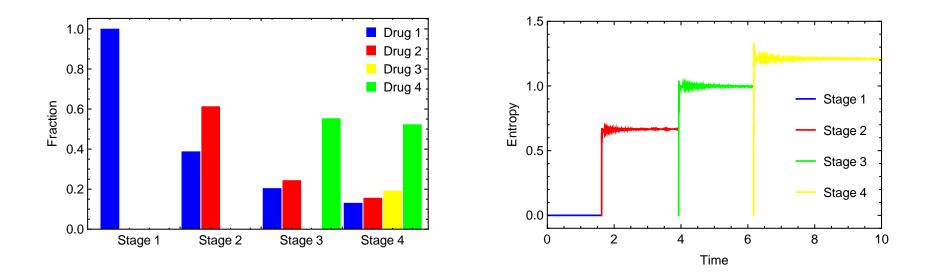
 $\begin{array}{l} \{p_r^1p_s^1,p_0^1\} = \{0.5,-0.7,0.0\}, \{g_s^1,g_0^1\} = \{0.01,0.005\}, \{p_r^2p_s^2,p_0^2\} = \{0.1,-0.7,0.0\}, \\ \{g_s^2,g_0^2\} = \{0.01,0.01\}, \{p_r^3p_s^3,p_0^3\} = \{0.2,-0.3,0.0\}, \{g_s^3,g_0^3\} = \{0.05,0.05\}, \\ \{p_r^4p_s^4,p_0^4\} = \{0.1,-0.2,0.0\}, \{g_s^4,g_0^4\} = \{0.001,0.0005\}, \{R_1^0,R_2^0,R_3^0,R_4^0\} = \\ \{0.05,0.15,0.2,0.6\} \end{array}$



Decay rate:??

An example with *asymmetric* drugs

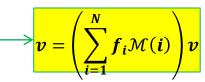
 $\{ p_r^1 p_s^1, p_0^1 \} = \{ 0.5, -0.7, 0.0 \}, \{ g_s^1, g_0^1 \} = \{ 0.01, 0.005 \}, \{ p_r^2 p_s^2, p_0^2 \} = \{ 0.1, -0.7, 0.0 \}, \\ \{ g_s^2, g_0^2 \} = \{ 0.01, 0.01 \}, \{ p_r^3 p_s^3, p_0^3 \} = \{ 0.2, -0.3, 0.0 \}, \{ g_s^3, g_0^3 \} = \{ 0.05, 0.05 \}, \\ \{ p_r^4 p_s^4, p_0^4 \} = \{ 0.1, -0.2, 0.0 \}, \{ g_s^4, g_0^4 \} = \{ 0.001, 0.0005 \}, \{ R_1^0, R_2^0, R_3^0, R_4^0 \} = \\ \{ 0.05, 0.15, 0.2, 0.6 \}$

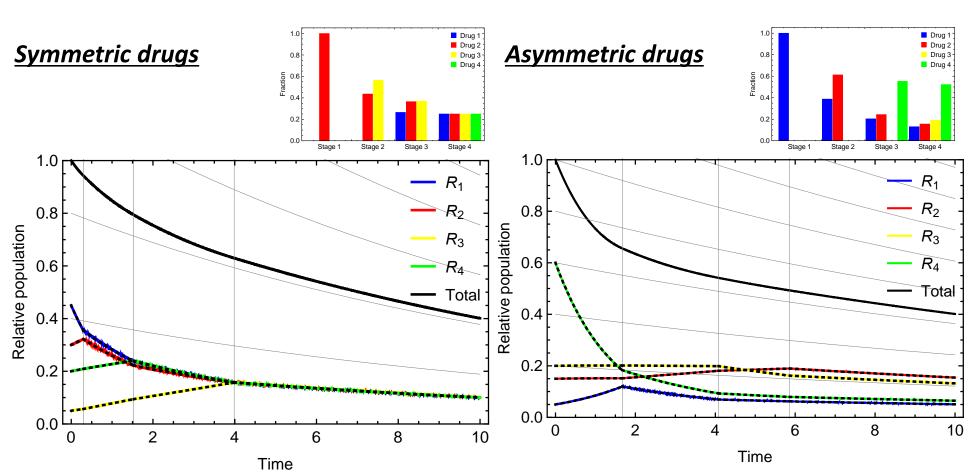


Within each stage, since the entropy graph is flat on each stage, drugs are periodically switching with relative period from the bar chart.

Instantaneous drug switch is supposed to be consistent with the **linear combination** of the dynamics with corresponding intensities (as numerically tested).

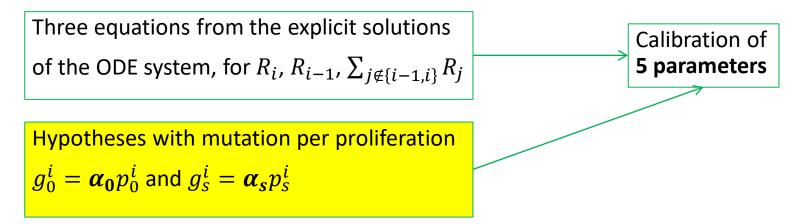






4. Optimal regimen without parameters

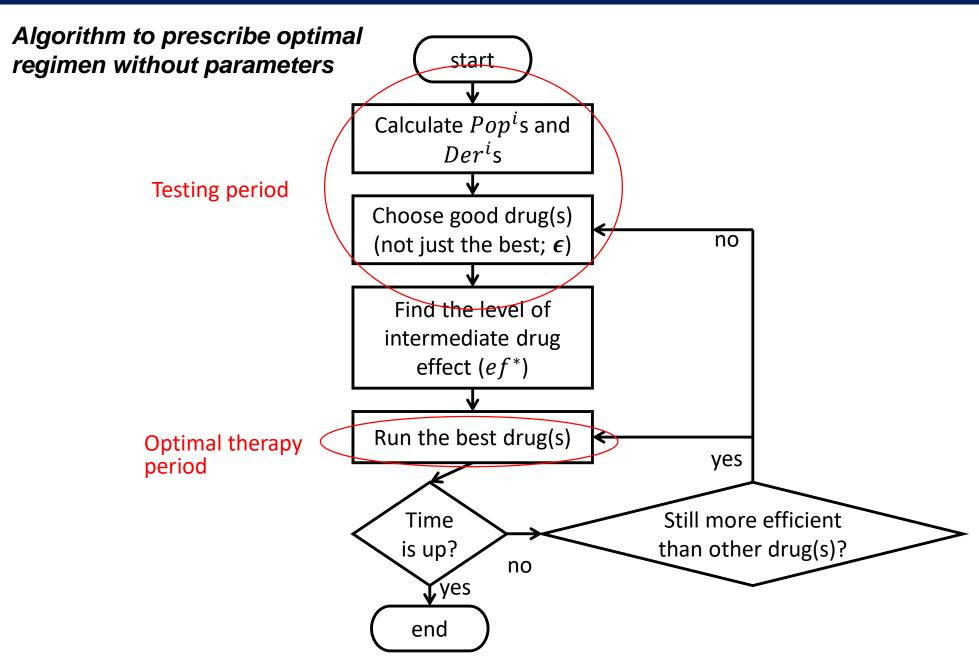
1. Subpopulations are know (e.g., cell free DNA):



2. Only total population is know (e.g., Prostate Specific Atigen):

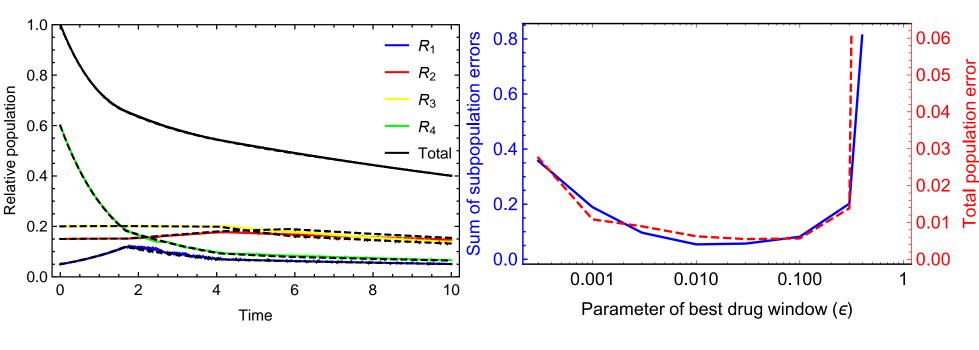
Computational algorithm??

4. Optimal regimen without parameters



4. Optimal regimen without parameters

Algorithm to prescribe optimal regimen without parameters

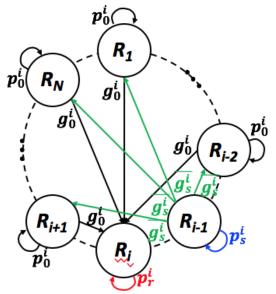


Good consistency with $\epsilon = 0.01$

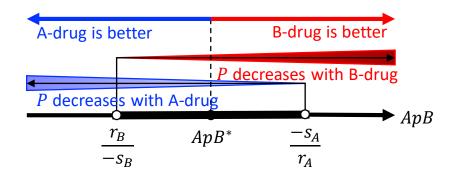
Errors of the algorithm over a range of ϵ

Conclusions

• Population structure



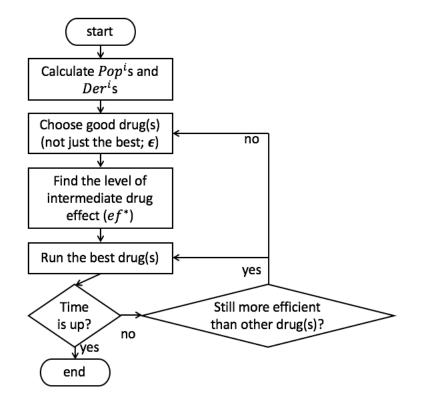
• Population makeup with balanced drug effects



 Numerically figured out optimal control

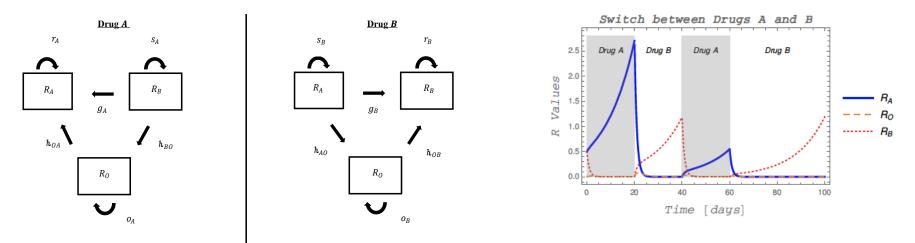
$$\frac{dv}{dt} = \mathcal{M}\left(\underset{1 \le i \le N}{\operatorname{argmin}} ef_i\right) v$$

 Optimal prescription without drug parameters known



Future work

• Considerations on the third type of cells (Areeba Khalid, Adelphi)



- Find combinations of collaterally sensitive factors from RNA (miRNA), DNA, network data
- Interdisciplinary implementation of the optimal therapy in the automatic cell culturing device, Mobidostat.
- Expansion of the model considering spatial distribution of microenvironment.

Thank you all!!



Thank you! Questions?