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Tumour vs Doctor



Tumour vs Doctor

(1) the relative power of the two players and

(2) the rules of the game that they are playing.
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we can force a setting where the best tumour strategy is bad for
the tumour



Responding to tumour’s optimal play

(1) the relative power of the two players

1. Make new drugs to change G so that any strategy is bad for the
tumour

2. Improve how we pick x in hopes that by improving our strategy
we can force a setting where the best tumour strategy is bad for
the tumour

Ryan Seamus McGee 3. Change our goal in the game: focus not on minimizing or
@RS McGee controlling the tumour size but on minimizing or controlling the
University of Washington negative effect of the tumour on health.
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Tool migration and adjusting narrative and method in
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Tool migration and adjusting narrative and method in
response to the field’s pressures:

Oncology tends to demand more biological accuracy
and precision at the potential expense of generality



From modelling to measuring

“Modeling ... is the indirect theoretical investigation of a real-
world phenomenon using a model. This happens in three stages:

In the first stage, a theorist constructs a model.

In the second, she analyzes, refines, and further articulates
the properties and dynamics of the model.

Finally, in the third stage, she asses the relationship
between the model and the world if such an assessment is
appropriate.

If the model is sufficiently similar to the world, then the analysis
Chia-Hua Lin of the model is also, indirectly, an analysis of the properties of
@chiahua_lin_phd the real-world phenomenon. Hence modeling involves indirect
£/ representation and analysis of real-world phenomena via the
mediation of models.”

- Weisberg, M. (2007). Who is a Modeler?

University of Virginia
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Evolutionary games by NSCLC
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Kaznatcheev, A., Peacock, J., Basanta, D., Marusyk, A., & Scott, J. G. (2019).
Fibroblasts and alectinib switch the evolutionary games played by non-small cell lung cancer.
Nature Ecology & Evolution, 3(3), 450-456.
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Moving from two strategies to three
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Two kinds of competitive release

Vague idea: decreasing the sensitive subpopulation
helps the resistant subpopulation.
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Two kinds of competitive release

Vague idea: decreasing the sensitive subpopulation
helps the resistant subpopulation.

Absolute fitness >< Relative fitness
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Conclusion

(1) the relative power of the two players and

(2) the rules of the game that they are playing.



