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Melanoma intermittent therapy (in vivo)

of vemurafenib responses is limited by acquired drug resistance6–9,15,16.
Our results suggest that the proliferation of vemurafenib-resistant cells
can be dependent on the continuous presence of the drug, such that
tumour growth is inhibited after cessation of drug administration.
These data are consistent with previous results indicating that both
normal and tumour cells can be sensitive to both the quality (that is,

which pathways are activated) and the quantity (that is, magnitude of
pathway activation) of signal pathway activation12–14,17–19. Furthermore,
we show that discontinuous dosing forestalls the onset of drug resist-
ance in two primary human xenograft models. Our observations, and
those of others, suggest that the majority of BRAF(V600E) melanomas
remain reliant on the reactivation of ERK despite ongoing inhibition of
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Figure 4 | Intermittent dosing of vemurafenib can be exploited to forestall
the development of drug resistance in vivo. a, Vemurafenib-resistant
tumours were implanted and then mice were dosed with either vehicle or
45mg kg21 vemurafenib twice daily (mean percentage6 s.e.m., n5 30) and
monitored for tumour establishment over a period of 100 days.
b, Vemurafenib-resistant tumours were implanted into nude mice and dosed
with 45mg kg21 vemurafenib twice daily immediately after implant. Once
tumours reached a volume of ,1,500mm3, mice were switched from
vemurafenib to vehicle control (blue line), while one mouse remained on
vemurafenib (red line). FNAs (purple arrows) were taken from the tumours
before and after drugwithdrawal to evaluate pERK. c, Lysates collected from the
FNAwere used tomeasure pERK, bars represent the pERK1/2 levels from seven
different tumours (separated by dotted grey lines), while mice were dosed with

vemurafenib (dark blue bars) or vehicle (light blue bars). The growth kinetics
for each tumour is represented by the line graph above the pERK1/2 bars and
FNA sampling is depicted by arrows (dark blue, on drug; light blue, off drug).
d, Tumour growth kinetics of naive parental HMEX1906 tumours with seven
tumours dosed continuously (top) and nine tumours dosed intermittently
(bottom). Intermittent dosing of vemurafenib was carried out on a 4-week on
drug (green arrow) and 2-week off drug (red arrow) schedule with 15mg kg21

vemurafenib twice daily. e, Kaplan–Meier curve of data in d (n5 7, continuous
dosing and n5 9, intermittent dosing) and Supplementary Fig. 6a (n5 7,
continuous dosing and n5 8, intermittent dosing), shows that there is a
significant survival advantage with an intermittent dosing (solid lines)
compared to a continuous dosing schedule (dashed lines). The end point for
euthanasia was predetermined as a tumour size of 1,200mm3.
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Das Thakur et al. Nature, 2013, 494:251-5 

• Intermittent therapy (4 week on/2 week off) improves response in vivo

• Various responses: some regression vs. gradual increase

• Resistant cells become drug dependent for continued proliferation

• Cessation of drug leads to regression of drug-resistant cells 



Intermittent therapy clinical trials

Schreur et al. Lancet Oncol, 2017 Valpione et al. Eur J Cancer, 2018

• Re-challenge after treatment break or other therapy due to progression or other causes

• Drug holidays: 4-12 weeks

• Re-challenge clinically meaningful

• Diverse response and duration 
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combination therapy are shown in the appendix (p 21). All 
analyses concerning response, progression-free survival, 
overall survival, and safety of rechallenge with dabrafenib 
plus trametinib were done on the intention-to-treat 
population (n=25). In the analysis of the progression-free 
survival during previous treatment with BRAF inhibitors, 
two patients were censored because the correct date of 
disease progression could not be adequately established 
(appendix p 19).

At the date of analysis, the median duration of follow-
up after initiation of dabrafenib plus trametinib 
rechallenge was 6·8 months (IQR 5·7–12·2). A confirmed 
partial response was documented in eight (32%; 95% CI 

15–54) of 25 patients (figure 1). Seven of eight responders 
had a BRAFV600E, and one had a BRAFV600K mutation. Six of 
eight patients who obtained a partial response had a 
history of brain metastases. In three of these patients 
regression of brain metastases was documented, one of 
whom had not received radiotherapy for brain metastases 
before. Among the patients with a partial response, six 
patients had been treated with dabrafenib plus trametinib, 
and two patients with vemurafenib or dabrafenib 
monotherapy before inclusion in this study (figure 1). 
One patient had shown disease progression as a best 
response to previous dabrafenib monotherapy. During 
rechallenge this patient obtained stable disease for 
5·3 months.

We found no significant difference between the median 
BRAF (with or without MEK inhibitor) inhibitor-free 
interval of responders (29·5 weeks [IQR 22·0–44·8]) and 
non-responders (26·0 weeks [IQR 15·0–32·5]; p=0·157). 
All partial responses were obtained within 4 months after 
treatment initiation (figures 2, 3). Stable disease was 
reported in ten (40%) patients (95% CI 21–61). Seven 
(28%) patients were diagnosed with progressive disease 
within 2 months of study treatment initiation; among 
these patients were the three patients who entered the 
study less than 12 weeks after the last dosing of a BRAF 
inhibitor. The median progression-free survival during 
rechallenge was 4·9 months (95% CI 3·6–6·2; appendix 
pp 5–6). The median progression-free survival during 
previous BRAF inhibitor treatment (with or without MEK 
inhibitor treatment) was 6·9 months (95% CI 4·8–9·1), 
after a median follow-up of 24·2 months (IQR 15·9–34·0; 
appendix p 19). We also found no correlation between the 
duration of treatment discontinuation interval and 
progression-free survival in this study. Four patients had 
a longer progression-free survival during rechallenge as 
compared with their previous BRAF inhibitor (with or 
without MEK inhibitor) treatment (the difference in 
progression-free survival was 0·3, 1·5, 2·3, and 
4·6 months). Three of these patients had previously been 
treated with dabrafenib plus trametinib. At the time of 
this report, five (23%) of 22 patients in whom disease 
progression had been established during rechallenge 
with dabrafenib plus trametinib continued study 
treatment beyond first progression (range 1–9 months). 
The median overall survival has not been reached 
(median overall survival 19·9 months [95% CI 0–41·2]; 
appendix p 6). After 6 months, 17 (68%) of 25 patients 
were still alive.

No grade 4 or 5 treatment-related adverse events 
occurred during the study; all ten deaths which occurred 
were attributed to disease progression. Treatment-related 
adverse events are shown in table 2. Grade 3 adverse 
events which were deemed treatment-related occurred in 
two patients (8%; panniculitis [n=1] and pyrexia [n=1]). 
Both patients had the same adverse events during 
previous treatment with vemurafenib monotherapy 
(panniculitis) and dabrafenib plus trametinib 

Figure 1: Reduction of lesions after initiation of dabrafenib plus trametinib rechallenge
Reduction is measured as maximum percentage reduction from baseline sum of lesions and the best investigator-
assessed confirmed responses are shown in 24 of the 25 enrolled patients (one patient died prior to assessment). 
PR=partial response. SD=stable disease. PD=progressive disease. *In one patient, no change in target lesion size 
could be detected. †In one patient in whom the sum of the largest diameters of the target lesions decreased by 
more than 30%, the best objective response was regarded as stable disease because of a new lesion at the time of 
response confirmation. 
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Figure 2: Duration of response with dabrafenib plus trametinib rechallenge
Assessed in 25 patients with BRAFV600-mutant melanoma. Best response denotes best investigator-assessed 
confirmed response classified according to Response Evaluation Criteria in Solid Tumors version 1.1. PR=partial 
response. SD=stable disease. PD=progressive disease.
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combination therapy (pyrexia). One patient developed 
asymptomatic diffuse idiopathic organising pneumonia 
without bronchiolitis obliterans, which did not require 
admission to hospital. Treatment with dabrafenib and 
trametinib was not interrupted and imaging 
abnormalities disappeared after 2 months of prednisone 
treatment. Another patient with a history of hypophysitis 
after ipilimumab treatment was admitted to hospital due 
to an Addison crisis triggered by grade 2 pyrexia 
attributed to dabrafenib and trametinib treatment. The 
patient had not sufficiently increased the dose of 
hydrocortisone substitution at the onset of pyrexia, 
triggering the Addison crisis. Symptoms resolved within 
1 day after discon tinuation of dabrafenib and trametinib 
and administration of dexamethasone. No other serious 
adverse events occurred on trial. Treatment with 
dabrafenib plus trametinib was interrupted at least once 
in 11 (44%) patients, and twice or more in five (20%) 
patients. Treatment was interrupted due to pyrexia in 
nine (36%) patients, fatigue in one (4%) patient, and 
myalgia and panniculitis in one (4%) patient. Dose 
reduction of trametinib was required in 13 (52%) 
patients. Pyrexia was the most common adverse event 
necessitating a dose reduction (n=7; 28%). Other reasons 
for dose reduction were fatigue (n=5; 24%), myalgia (n=3; 
12%), panniculitis (n=2; 8%), headache (n=1; 4%), nausea 
(n=1; 4%), and grade 2 alkaline phosphatase elevation 
(n=1; 4%). In three (12%) patients, dexamethasone was 
used to prevent recurrence of pyrexia, after dose 
reductions of dabrafenib and trametinib had failed to do 
so. In one patient, treatment was permanently 
discontinued due to recurrent grade 3 panniculitis, 
refractory to therapy interruption and dose reduction in 
combination with dexamethasone. No substantial 
differences were seen in response to rechallenge or 
progression-free survival between the four (16%) patients 
who received corticosteroids for treatment of adverse 
events and those who did not. Adverse events were 
similar during first exposure to BRAF and MEK inhibitor 
therapy and rechallenge.

From April 5, 2014, to July 31, 2016, 165 plasma samples 
from 25 patients were collected. The detection of 
BRAFV600mut ctDNA and change in copy number over time 
is shown in tables 3 and 4 and figure 4. Patients with a 
partial response had a significantly lower copy number of 
BRAFV600mut ctDNA after 2 weeks of treatment than those 
with no response (p=0·040). After 2 weeks of treatment, 
the BRAFV600mut ctDNA copy number and fraction had 
decreased significantly compared with baseline 
(p=0·0070; figure 4). In four (18%) of 22 patients, an 
increase in the BRAFV600mut ctDNA copy number was 
detected before diagnosis of disease progression 
(range 1·8–3·2 months; appendix p 3).

Persistent detection of BRAFV600mut ctDNA after 2 weeks 
of treatment was significantly correlated with a worse 
progression-free survival (1·8 months [95% CI 1·2–2·4] vs 
5·9 months [4·9–6·9]; p=0·001; appendix p 11). We found 

no significant correlations between tumour response or 
survival and baseline detection of BRAFV600mut ctDNA, 
BRAFV600K or BRAFV600E mutation, or presence of brain 
metastases. We found a significant correlation between 
ECOG performance status and progression-free survival 
(appendix pp 7–18). We did not obtain objective responses 
in patients with raised baseline lactate dehydrogenase 
(n=7; 28%; p=0·057), and these patients had significantly 

Figure 3: Change in tumour burden of target lesions after initiation of dabrafenib plus trametinib rechallenge 
until disease progression (n=25)
Assessed in 25 patients with BRAFV600-mutant melanoma. One patient died due to disease progression before a 
response evaluation could be done and best response is listed as progressive disease.
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Disease progression
Ongoing response
Stable disease
Response evaluation

Grade 1–2 Grade 3 Grade 4 Grade 5

Pyrexia 10 (40%) 1 (4%) 0 0

Fatigue 7 (28%) 0 0 0

Myalgia 7 (28%) 0 0 0

Elevated alkaline phosphatase 6 (24%) 0 0 0

Elevated creatine kinase 6 (24%) 0 0 0

Elevated aspartate transaminase 6 (24%) 0 0 0

Elevated alanine transaminase 5 (20%) 0 0 0

Diarrhoea 3 (12%) 0 0 0

Arthralgia 3 (12%) 0 0 0

Panniculitis 2 (8%) 1 (4%) 0 0

Headache 2 (8%) 0 0 0

Skin papilloma 2 (8%) 0 0 0

Rash 2 (8%) 0 0 0

Hyperkeratosis 1 (4%) 0 0 0

Nausea 1 (4%) 0 0 0

Vomiting 1 (4%) 0 0 0

Decreased appetite 1 (4%) 0 0 0

Listed are the number of patients (n=25) with adverse events that were deemed to be related to treatment with 
dabrafenib and trametinib rechallenge. No grade 4 or 5 adverse events occurred. All grade 3 adverse events are reported. 

Table 2: Treatment-related adverse events 

Fig. 3. KaplaneMeier curves for the study cohort according to the prognostic factors for progression-free survival: (A) more or less than 3

metastatic sites and (B) therapy with monotherapy BRAF inhibitors or combination of BRAF inhibitors and MEK inhibitors (plus

ribociclib in 3 patients). LEE011 Z ribociclib.

Fig. 2. KaplaneMeier curves for the study cohort according to the prognostic factors for overall survival from the start of retreatment: (A)

LDH above or below the upper normal limit, (B) more or less than 3 metastatic sites and (C) therapy with monotherapy BRAF inhibitors

or combination of BRAF inhibitors and MEK inhibitors (plus ribociclib in 3 patients). LDH Z lactic dehydrogenase;

LEE011 Z ribociclib.

S. Valpione et al. / European Journal of Cancer 91 (2018) 116e124122
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Treatment-related adverse events are described in Extended 
Data Fig. 5. On the continuous therapy arm, 38 patients (36%) 
experienced grade 3 adverse events, and 7 (7%) experienced grade 
4 events, while on the intermittent therapy arm, 31 patients (31%) 
experienced grade 3 adverse events, and 3 (3%) experienced grade 
4 events (P = 0.46 for grade 3; P = 0.33 for grade 4). The most com-
mon grade 3–4 adverse event across both arms was fatigue. There 
was a significant difference in the incidence of grade 3 and 4 pyrexia 
(six patients on continuous dosing versus one patient on intermit-
tent dosing, P < 0.001).

Optional pretreatment circulating tumor DNA (ctDNA) data 
were available for a subset of patients on S1320 enrolled on or after 
3 January 2017 for exploratory analyses. Detection of ctDNA before 
therapy was associated with worse PFS (median BRAFV600 ctDNA 

positive = 5.8 months; 95% CI 4.2–9.6 months, BRAFV600 ctDNA 
negative = 21.4 months; 95% CI 10.4–upper bound cannot be esti-
mated; measured from start of treatment on study, P = 0.001). The 
sample size for the analysis of the effect of ctDNA on PFS by ran-
domized arm was limited, but there was some evidence that the 
favorable prognostic association of undetectable BRAFV600 ctDNA 
was stronger among patients randomized to the continuous therapy 
arm (interaction P value = 0.12; Fig. 4).

Contrary to preclinical studies1,2,7, this large, randomized phase 
2 clinical trial finds that continuous dosing of dabrafenib and tra-
metinib yields superior PFS compared to intermittent dosing. This 
was observed despite that fact that, like the murine model1, the dos-
ing schedule ensured an extended period during which patients 
were exposed to subtherapeutic drug levels. Although there are  
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Fig. 2 | Progression-free survival. a, The median PFS after randomization 
(8 weeks after the start of treatment) was 9.0 months in the continuous 
dosing arm and 5.5 months in the intermittent dosing arm. The HR, 80% CI 
(shaded regions) and two-sided Wald-test P value from a Cox regression 
model stratified by randomization stratification factors are reported. b, PFS by 
subgroup; the HR, 80% CI and two-sided Wald-test P values from a Cox  
regression model are reported; no adjustment was made for multiple 
comparisons. CONT, continuous; INT, intermittent; e, events; n,  
total number.
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Algazi et al. Nature Medicine, 2020, 26:1564-1568 

• Phase 2 trial of intermittent therapy

• 8 week continuous therapy lead in,  3 week off and 5 week on or continuous therapy 

• Intermittent dosing did not improve progression free survival 

• No difference in the overall survival and the overall toxicity 

• This one-size-fits-all approach unlikely to be optimal clinically  

Progression free survival Overall survival

Intermittent therapy clinical trials



Inter-patient variability

Zhang et al. Nature Comm, 2017
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Fig. 5. Evolutionary-informed BRAF inhibitor dosing schedules outperform continuous or fixed intermittent dosing in vivo A. Treatment schema for mouse experiment

comparing continuous and fixed intermittent schedule of BRAF inhibitor treatment to personalized, adaptive dosing using mathematical modelling of individual xenografted

tumours. B. Evolutionary-informed adaptive dosing schedules are associated with better tumour control than either continuous or fixed intermittent drug dosing. Data show

mean tumour volume data from WM164 melanoma xenografts between the three BRAF inhibitor treatment groups over time (left). Untreated “sentinel” mice receiving drug

free chow is shown by the dotted line. Average tumour volumes are shown for each treatment group on the last day of the experiment (right). C. Mathematical modelling

of tumour response dynamics under drug predicts individual dosing schedules for each mouse. Individual tumour volume and treatment data are shown from the adaptive

treatment group over time (green line = off therapy, red line = on therapy). D. Chart shows individual dosing schedules for each mouse on the adaptive treatment arm of the

xenograft experiment (grey: on therapy. White: off therapy), along with the increases in individual tumour volumes at the end of the experiment. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

Melanoma adaptive therapy in vivo



Melanoma adaptive therapy in vivo

I. Smalley, E. Kim and J. Li et al. / EBioMedicine 48 (2019) 178–190 185

Fig. 3. Transcriptional state composition determines BRAF inhibitor sensitivity. A. BRAF-mutant melanoma cell lines with a high percentage of Transcriptional State #1 exhibit

a reduced vemurafenib IC50. Transcriptional state composition was measured in 11 cell lines by flow cytometry based on Axl, MITF and ERBB3 (top); Vemurafenib IC50s

were calculated by MTT assay (bottom). B. t-SNE analysis showing that Transcriptional State 1 is the same in both the drug sensitive WM164 and resistant WM164R cell

lines. C Gene expression heatmap comparing cells in State #1 from drug sensitive (WM164) and drug resistant (WM164R) melanoma cells. D. Drug holidays allow for the

recovery of Transcriptional State #1. Transcriptional state distribution was measured in WM164 cells using flow cytometry (as above) following different treatment/drug

holiday schedules. E. Resistant melanomas that retain drug-sensitive Transcriptional State #1 return to sensitivity following drug holidays. Data show responses of drug-

naïve WM164 and 1205Lu, drug-resistant WM164R and 1205LuR and drug-resistant WM164R and 1205LuR with vemurafenib removed from cell culture media for increasing

periods of time (1–10 weeks, top) by MTT assay. Transcriptional state composition was measured by flow cytometry. F. Return of melanoma cell lines to sensitivity following

drug removal. Flow cytometry-based apoptosis assay shows the percentage of apoptotic (TMRM-) cells in control, resistant and resistant cultures following drug withdrawal

treated with vemurafenib (72 h, 3 µM).

the differences in fitness between the sensitive and resistant tran-
scriptional states could be leveraged to improve tumour control
through dosing schedules that maximized the number of sensitive,
drug responsive cells in the tumour (Schematic in Fig. 4A). We rea-
soned that the decrease in tumour volume on drug and then the
rate of re-growth in the absence of drug in vivo was a reflection
of the balance between sensitive (#1) and resistant (#2 and #3)
transcriptional states. To better understand this, we developed a
two-compartment mathematical (ODE: ordinary differential equa-
tion) model that described the competition between sensitive (S:
State #1) and resistant (R: States #2 and #3) cell growth dynamics
(Fig. 4B). The model allowed for transition between the sensitive
and resistant cell types and was calibrated using tumour growth
dynamics from melanoma WM164 xenografts grown under vehi-
cle, continuous, 2-day on/6-day off, 7-day on/7-day off and 14-day
on/14-day off treatments with the BRAF inhibitor PLX4720 (Sup-
plemental Fig. 9). The estimated parameters generated tumour dy-
namics that matched with experimental data (R-squared = 0.97 and
average relative error = 0.35, 35%, Fig. 4C). The estimated parame-
ter set served as an initial insight into designing the personalized
adaptive dosing schedule, in which each mouse had a 2-week lead-

in of PLX4720 followed by mathematical model-driven treatment
decisions. The model was re-calibrated in real-time using individ-
ual animal tumour growth dynamics three times per week, which
then determined whether drug should be held or reinitiated for
each mouse (Fig. 4D). It is known that clinical responses are only
seen to BRAF inhibitor therapy when tumour pERK levels are de-
creased by >80% [29]. With this in mind, we retained the standard
dose of PLX4720 and instead altered the schedule to ensure that
the drug sensitive population of cells was retained.

As the final step, we validated our mathematical model in
vivo to determine whether personalized, adaptive dosing sched-
ules would lead to improved anti-tumour responses. For the adap-
tive arm, mouse tumours were measured every 2–3 days. The tu-
mour volumes were then entered into the mathematical model in
real-time to predict whether the inhibition of tumour growth on
that day would be better if drug was administered or held. Sup-
plemental Fig. 10 shows the distribution of the estimated parame-
ters for the 11 mice on the adaptive treatment arm. As our com-
parator arms, we used standard continuous dosing schedules (such
as those used clinically) and a fixed intermittent dosing sched-
ule, that has been postulated to outperform continuous dosing

• Transcriptional heterogeneity in melanoma cell lines

• Drug induced distribution changes 

• WM164 cell lines seems to be recovering drug sensitivity 

• Inhibition of growth in 4-10 week off WM164 vs. drug sensitivity of basal cell line

• Decided to use WM164 cell line xenograft model
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Fig. 4. Development of a mathematical model to maintain drug sensitive cell states through adaptive drug-dosing. A. Model showing the basis for using personalized

intermittent (adaptive) therapy to control transcriptional heterogeneity. It is assumed that melanomas are composed of cells with transcriptional states that either convey

drug sensitivity (red) or resistance (green). Drug holidays are associated with the recovery of cells with drug sensitivity. B. Scheme showing projected temporal changes in

tumour growth in a two-compartment model consisting of a sensitive (S) and a resistant (R) compartment (top). Mathematical expression for the model, where gS, R indicate

growth rate of S and R, respectively; K is a carrying capacity; δ is death rate of S; α & β are transition rates between two states (bottom). C. Linear regression curve shows

the model parameters generated tumour dynamics that matched with experimental data (R-squared = 0.97 and average relative error = 0.35, 35%). D. Modelling the effects

of intermittent/continuous BRAF inhibitor treatment in human melanoma mouse xenografts. Model prediction was updated in real-time using the compartment model and

direct tumour volume sampling. Tumour volume trajectory was then calculated for which the effects of drug off was greater than drug on (Voff < Von, dotted box). A critical

tumour volume was then determined (VC, indicated by yellow asterisk) that satisfied the condition Voff < Von. The decision to treat was determined by comparing the

critical tumour volume with experimentally measured tumour volume (VE). If VE was less than VC, the mouse was taken off treatment. Otherwise, treatment continued.

Experimental data is depicted in black, model predicted volume changes during treatment-off is blue, model predicted tumour volume during treatment-on is red. The

yellow asterisk indicates a critical tumour volume, which is simulated tumour volume at the current time point that makes volume on (V on) > tumour volume off (V off)

at the next time point. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

schedules in preclinical studies [30]. Control mice were treated
with PLX4720 either continuously or on a fixed intermittent dosing
schedule (2 weeks on/1 week off; Fig. 5A). The efficacy of PLX4720
compared to vehicle control has been well established previously
by our group and others (Supplemental Fig. 11) [9,21,31]. The adap-
tive schedule outperformed both continuous treatment and a fixed
drug-holiday schedule, and led to significantly improved tumour
control (Fig. 5B). Intriguingly, the adaptive dosing schedules were
quite different for each mouse, despite the same cell line being
xenografted, suggesting the potential influence of host factors in
regulating heterogeneity (Fig. 5C–D). Supplemental Fig. 12 shows
model predictions of tumour volume change from day 0 to day 37
fit to the measured tumour volumes for each mouse and Supple-
mentary Table 6 contains the 200 parameter sets for each mouse
that generated the model prediction curves. An analysis of final
tumour volume at the end of the experiment demonstrated sig-
nificantly smaller tumour volumes for the adaptive dosing sched-
ule compared to either the continuous drug dosing or the 2 week
on/1 week off intermittent dosing (Fig. 5B).

4. Discussion

The treatment landscape for advanced melanoma has changed
dramatically over the past 7 years [12,32–34]. Although these new
therapies, including the BRAF-MEK inhibitor combination and im-
mune checkpoint inhibitors, have reduced death rates by ~30%,
cures remain infrequent and most patients eventually fail therapy.
For the patients with BRAF-mutant melanoma, a legitimate goal
is to develop therapy schedules that prolong the duration of re-
sponse and/or disease control. There is already clinical evidence
that a sub-set of patients with BRAF-mutant melanoma can be suc-
cessfully re-challenged with BRAF and BRAF-MEK inhibitor therapy
following an initial round of response [14,35]. In the present study
we have used innovative single cell heterogeneity analyses to de-
fine how the baseline mixture of cellular states predicts for initial
BRAF inhibitor sensitivity. This data was then leveraged to develop
personalized adaptive dosing schedules that accounted for the fit-
ness of individual melanoma cells within heterogeneous tumours,
with the goal of improving therapeutic responses in vivo.
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carrying capacity +, the maximum size of the tumor due to nutrient and space constraints. The 
coefficient / scales the degree to which sensitive cells inhibit the growth rate of resistant cells. If 
C > 1 (or C < 1), then sensitive cells have a greater (or smaller) competitive effect on resistant 
cells than resistant cells have on themselves.  

As a second variant of the therapy model, we consider the case where phenotypic plasticity allows 
for switching between drug-sensitive and resistant cell types (SW, Fig. 2B): 
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This model is a direct extension of the first model, and as such, all overlapping parameters are 
the same. There are two key differences. First, sensitive cells no longer have a scaled effect on 
resistant cells, and so C = 1. Second, sensitive cells can switch to resistant ones at rate 3, or 
resistant cells to sensitive ones at rate 4, depending on whether treatment is on or off. Note that 
3 is non-zero when treatment is on and zero otherwise, whereas 4 is non-zero when treatment is 
off and zero when treatment is on.  

To more easily visualize and understand the dynamics of these two models, we non-
dimensionalized them (6 = %"#, "̅ = " +,⁄ *9 = * +)⁄  and examined their dynamics in the phase 
plane of "̅	<=. *9. In the LV model, the competition coefficient / and initial populations ("̅(0), *9(0)) 
determine the number of intermittent therapy cycles before resistance dominates (Fig. 2A). 
Intermittent therapy results in more on-off treatment cycles when both / and "̅(0) are large (Fig. 
2A bottom panel). In the SW model (Fig. 2B), intermittent therapy results in more on-off treatment 
cycles when both the initial sensitive population ("̅(0)) and the switching rate from resistant to 
sensitive populations (4) are large (Fig. 2B bottom panel). These analyses help focus our attention 
on the key parameters that might determine the efficacy of adaptive therapy. 

Parameter estimation for the eight patients 

We identified model parameters that minimized the difference between model predictions and 
patient data (Figure 1). The cost function for this optimization is to minimize ?2 norm of the 
difference, 

min
!→
DE F#; %→I − ?(#)D&

&
	, 

where %→ is the entire model parameter set, and E is the predicted total tumor burden (E = " + *) 
at time #  and ?  is the actual tumor burden at time # . Here, we assume that LDH is directly 
proportional to S + R. The LV model parameter set includes intrinsic growth rates, carrying 
capacity, death rate, and the competition coefficient. Note, we assume that sensitive cells do not 
divide when treatment is on (%! = 0, with therapy on). All patient data is for continuous treatment 
(at the time of writing, we do not have intermittent therapy results for such patients). Thus, a 
parameter set for the LV model is J = {"', +, -, %" , /}, where "' is the initial number of sensitive 
cells and *' = ?MN'(1 − "') is the initial number of resistant cells. In the SW model, the transition 
rate from resistant to sensitive is assumed to be zero when treatment is on. The parameter set 
for the SW model is J = {"', +, -, %" , 3}. We employed a steepest descent optimization algorithm 
with implicit filtering (33) to identify best-fit parameters for both models (Supplementary excel file). 
Parameter estimations were conducted in MATLAB using the implicit filtering algorithm (33). We 
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Fig. 3. Transcriptional state composition determines BRAF inhibitor sensitivity. A. BRAF-mutant melanoma cell lines with a high percentage of Transcriptional State #1 exhibit

a reduced vemurafenib IC50. Transcriptional state composition was measured in 11 cell lines by flow cytometry based on Axl, MITF and ERBB3 (top); Vemurafenib IC50s

were calculated by MTT assay (bottom). B. t-SNE analysis showing that Transcriptional State 1 is the same in both the drug sensitive WM164 and resistant WM164R cell

lines. C Gene expression heatmap comparing cells in State #1 from drug sensitive (WM164) and drug resistant (WM164R) melanoma cells. D. Drug holidays allow for the

recovery of Transcriptional State #1. Transcriptional state distribution was measured in WM164 cells using flow cytometry (as above) following different treatment/drug

holiday schedules. E. Resistant melanomas that retain drug-sensitive Transcriptional State #1 return to sensitivity following drug holidays. Data show responses of drug-

naïve WM164 and 1205Lu, drug-resistant WM164R and 1205LuR and drug-resistant WM164R and 1205LuR with vemurafenib removed from cell culture media for increasing

periods of time (1–10 weeks, top) by MTT assay. Transcriptional state composition was measured by flow cytometry. F. Return of melanoma cell lines to sensitivity following

drug removal. Flow cytometry-based apoptosis assay shows the percentage of apoptotic (TMRM-) cells in control, resistant and resistant cultures following drug withdrawal

treated with vemurafenib (72 h, 3 µM).

the differences in fitness between the sensitive and resistant tran-
scriptional states could be leveraged to improve tumour control
through dosing schedules that maximized the number of sensitive,
drug responsive cells in the tumour (Schematic in Fig. 4A). We rea-
soned that the decrease in tumour volume on drug and then the
rate of re-growth in the absence of drug in vivo was a reflection
of the balance between sensitive (#1) and resistant (#2 and #3)
transcriptional states. To better understand this, we developed a
two-compartment mathematical (ODE: ordinary differential equa-
tion) model that described the competition between sensitive (S:
State #1) and resistant (R: States #2 and #3) cell growth dynamics
(Fig. 4B). The model allowed for transition between the sensitive
and resistant cell types and was calibrated using tumour growth
dynamics from melanoma WM164 xenografts grown under vehi-
cle, continuous, 2-day on/6-day off, 7-day on/7-day off and 14-day
on/14-day off treatments with the BRAF inhibitor PLX4720 (Sup-
plemental Fig. 9). The estimated parameters generated tumour dy-
namics that matched with experimental data (R-squared = 0.97 and
average relative error = 0.35, 35%, Fig. 4C). The estimated parame-
ter set served as an initial insight into designing the personalized
adaptive dosing schedule, in which each mouse had a 2-week lead-

in of PLX4720 followed by mathematical model-driven treatment
decisions. The model was re-calibrated in real-time using individ-
ual animal tumour growth dynamics three times per week, which
then determined whether drug should be held or reinitiated for
each mouse (Fig. 4D). It is known that clinical responses are only
seen to BRAF inhibitor therapy when tumour pERK levels are de-
creased by >80% [29]. With this in mind, we retained the standard
dose of PLX4720 and instead altered the schedule to ensure that
the drug sensitive population of cells was retained.

As the final step, we validated our mathematical model in
vivo to determine whether personalized, adaptive dosing sched-
ules would lead to improved anti-tumour responses. For the adap-
tive arm, mouse tumours were measured every 2–3 days. The tu-
mour volumes were then entered into the mathematical model in
real-time to predict whether the inhibition of tumour growth on
that day would be better if drug was administered or held. Sup-
plemental Fig. 10 shows the distribution of the estimated parame-
ters for the 11 mice on the adaptive treatment arm. As our com-
parator arms, we used standard continuous dosing schedules (such
as those used clinically) and a fixed intermittent dosing sched-
ule, that has been postulated to outperform continuous dosing

Smalley et al. Ebiomedicine, 2019



186 I. Smalley, E. Kim and J. Li et al. / EBioMedicine 48 (2019) 178–190

Fig. 4. Development of a mathematical model to maintain drug sensitive cell states through adaptive drug-dosing. A. Model showing the basis for using personalized

intermittent (adaptive) therapy to control transcriptional heterogeneity. It is assumed that melanomas are composed of cells with transcriptional states that either convey

drug sensitivity (red) or resistance (green). Drug holidays are associated with the recovery of cells with drug sensitivity. B. Scheme showing projected temporal changes in

tumour growth in a two-compartment model consisting of a sensitive (S) and a resistant (R) compartment (top). Mathematical expression for the model, where gS, R indicate

growth rate of S and R, respectively; K is a carrying capacity; δ is death rate of S; α & β are transition rates between two states (bottom). C. Linear regression curve shows

the model parameters generated tumour dynamics that matched with experimental data (R-squared = 0.97 and average relative error = 0.35, 35%). D. Modelling the effects

of intermittent/continuous BRAF inhibitor treatment in human melanoma mouse xenografts. Model prediction was updated in real-time using the compartment model and

direct tumour volume sampling. Tumour volume trajectory was then calculated for which the effects of drug off was greater than drug on (Voff < Von, dotted box). A critical

tumour volume was then determined (VC, indicated by yellow asterisk) that satisfied the condition Voff < Von. The decision to treat was determined by comparing the

critical tumour volume with experimentally measured tumour volume (VE). If VE was less than VC, the mouse was taken off treatment. Otherwise, treatment continued.

Experimental data is depicted in black, model predicted volume changes during treatment-off is blue, model predicted tumour volume during treatment-on is red. The

yellow asterisk indicates a critical tumour volume, which is simulated tumour volume at the current time point that makes volume on (V on) > tumour volume off (V off)

at the next time point. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

schedules in preclinical studies [30]. Control mice were treated
with PLX4720 either continuously or on a fixed intermittent dosing
schedule (2 weeks on/1 week off; Fig. 5A). The efficacy of PLX4720
compared to vehicle control has been well established previously
by our group and others (Supplemental Fig. 11) [9,21,31]. The adap-
tive schedule outperformed both continuous treatment and a fixed
drug-holiday schedule, and led to significantly improved tumour
control (Fig. 5B). Intriguingly, the adaptive dosing schedules were
quite different for each mouse, despite the same cell line being
xenografted, suggesting the potential influence of host factors in
regulating heterogeneity (Fig. 5C–D). Supplemental Fig. 12 shows
model predictions of tumour volume change from day 0 to day 37
fit to the measured tumour volumes for each mouse and Supple-
mentary Table 6 contains the 200 parameter sets for each mouse
that generated the model prediction curves. An analysis of final
tumour volume at the end of the experiment demonstrated sig-
nificantly smaller tumour volumes for the adaptive dosing sched-
ule compared to either the continuous drug dosing or the 2 week
on/1 week off intermittent dosing (Fig. 5B).

4. Discussion

The treatment landscape for advanced melanoma has changed
dramatically over the past 7 years [12,32–34]. Although these new
therapies, including the BRAF-MEK inhibitor combination and im-
mune checkpoint inhibitors, have reduced death rates by ~30%,
cures remain infrequent and most patients eventually fail therapy.
For the patients with BRAF-mutant melanoma, a legitimate goal
is to develop therapy schedules that prolong the duration of re-
sponse and/or disease control. There is already clinical evidence
that a sub-set of patients with BRAF-mutant melanoma can be suc-
cessfully re-challenged with BRAF and BRAF-MEK inhibitor therapy
following an initial round of response [14,35]. In the present study
we have used innovative single cell heterogeneity analyses to de-
fine how the baseline mixture of cellular states predicts for initial
BRAF inhibitor sensitivity. This data was then leveraged to develop
personalized adaptive dosing schedules that accounted for the fit-
ness of individual melanoma cells within heterogeneous tumours,
with the goal of improving therapeutic responses in vivo.

Model calibration & prediction

• 11 one-side xenograft models 

• Measure individual mouse tumor volume changes every 2~3 days

• Estimate model parameters (H) that minimize the difference between model predicted 

tumor volume and mouse tumor volume every 2~3 days
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tetramethylrhodamine methyl ester (TMRM) and analysed by flow
cytometry.

2.10. Mouse xenografts

Seven-week-old female NSG mice (The Jackson Laboratory,
Bar Harbor, ME, USA) were subcutaneously injected with 5 × 105

WM164 cells per mouse. Tumours were allowed to establish over
3 days. Mice were randomly separated into treatment cohorts us-
ing GraphPad’s random treatment group assignment (graphpad.
com), consisting of 11 mice per cohort. Mice received D10001 con-
trol chow or AIN-76A 417mg/kg PLX4720-formulated chow (Re-
search Diets, New Brunswick, NJ, USA) daily. Tumour volumes
(½× L(length) × W(width)2) were measured every 2–3 days. All an-
imal experiments were carried out in compliance with ethical reg-
ulations and protocols approved by the University of South Florida
Institutional Animal Care and Use Committee.

2.11. Mathematical model for personalized adaptive xenograft
treatment

To describe tumour volume response to BRAF inhibitor
treatment, a two-compartment Ordinary Differential Equation
model was developed consisting of a sensitive (S) and a re-
sistant (R) compartment, dS

dt
= gs(1 − S+R

K )S − δS − αS + βR, dR
dt

=
gR(1 − S+R

K )R + αS − βR, where gS, R indicate growth rate of S and
R, respectively, and δ is the death rate of S. The two compartments
share a carrying capacity K, the maximum capacity of the tumour
either due to nutrient or space constraints. We also allow transi-
tion between the two states (α and β are the transition rates). To
predict an effective fixed intermittent inhibitor therapy schedule,
the model was calibrated to xenograft tumour growth dynamics on
no-treatment, continuous, 2-day on/6-day off, 7-day on/7-day off
and 14-day on/14-day off schedules. These estimated parameters
were later used as initial ranges for parameterizing the mathemat-
ical model to determine the individual mouse-specific treatment
schedules. To predict adaptive therapy for each mouse, we trained
the model to reproduce all previous tumour volume changes, and
then used it to forecast the expected tumour volumes (both on
and off) at future time points. The mathematical model was cal-
ibrated with each mouse tumour volume change data every 2–
3 days. We used an optimization algorithm called implicit filtering,
a steepest descent algorithm for problems with bound constraints,
to determine the parameters (H) that minimised the difference be-
tween predicted normalized tumour volume (V(t;H), V(0,H) = 1)
and mouse tumour volume (D(t)/D(0), normalized tumour volume)
[25]. The mathematical definition of our problem was:

min f (H) = min
√∑

i

(V (t; H) − D(t)/D(0))2

where the goal is to minimize the objective function f subject to
the condition that H ∈RN is in the feasible region $. Estimated pa-
rameters produced fitted curves and small root-mean-squared er-
rors (average error = 0.34, minimum error = 0.09, and maximal er-
ror = 0.79). Then, a critical tumour volume (Fig. 4D, yellow aster-
isk) was calculated that produces the most impact when switching
treatment off (c.f., Fig. 4D below dotted line, off volume < on vol-
ume). Using the estimated parameters for each individual mouse,
we simulated the impact of treatment both on and off for two or
three days, resulting in multiple potential tumour volume trajec-
tories. We then compared the simulated tumour volumes of these
two groups (on and off treatment). We examine the predicted tu-
mour volume increase in comparison to the previous treatment
decision (either on or off) time point. If this predicts that the tu-

mour volume on (V on) > tumour volume off (V off) at the next
time point, we name this volume the “critical volume”. Next, we
compared the actual tumour volume to the critical value and rec-
ommended whether to restart or hold drug; if for example, ac-
tual tumour volume < critical tumour volume, the model suggests
to stop treatment, by calculating the probability of success on/off
drug. To accommodate individual tumour dynamics, both the crit-
ical volume and the treatment on/off decisions were personalized
for each mouse.

3. Results

3.1. Defining the transcriptional diversity of melanoma

To better understand the role of transcriptional heterogeneity
in melanoma drug response, we developed a single cell analysis
workflow to simultaneously quantify the expression of 88 genes
per cell (Fig. 1A–B, Supplemental Tables 1–3). This gene panel was
chosen to represent the key signalling molecules and transcrip-
tion factors involved in melanoma biology and the response of
melanoma cells to BRAF inhibitor therapy. The goal was to de-
fine the number of distinct cell states in melanoma cultures, and
to determine how these cell states were regulated by BRAF in-
hibitor therapy. We used isogenic cell line pairs that were either
drug naïve or had been continuously treated with BRAF inhibitor
for >6 months until resistance was acquired [3,26]. Single cell gene
expression data was analysed using the Single Cell Heterogeneity
(SinCHet) MATLAB toolbox developed by our group, which allows
different, coexistent transcriptional states to be identified [27]. Us-
ing Shannon diversity index metrics that quantify species richness
(a measure of the number of distinct transcriptional states present)
and evenness, and the D statistic that quantifies an overall differ-
ence of Shannon index between two populations [27], we found
some melanomas exhibited an increase in diversity/heterogeneity
after chronic drug treatment while others showed decreased diver-
sity (Fig. 1C). These transcriptional changes were also mirrored by
changes in the diversity of cell morphologies seen (Fig. 1C, Sup-
plemental Fig. 5). Our SinCHet analysis, which used the minimum
change point at the lowest cluster level (Supplemental Fig. 1), ini-
tially identified four distinct transcriptional states (Fig. 1D–F). An
examination of the relationship between the transcriptional states
using T-distributed stochastic neighbour embedding (t-SNE) anal-
ysis, showed #1, #3 and #4 to be more distinct, with state #2
being highly diverse and occupying the most transcriptional space
(Fig. 1D). Overlay of the cell line identity data demonstrated the
commonality of the states between the two cell lines and high-
lighted the increased diversity of the WM164 cells and the re-
duced diversity of the 1205Lu cells following chronic BRAF inhibi-
tion (Fig. 1D). Principal component analysis and Kruskal-Wallis test
demonstrated that the four transcriptional states were statistically
distinct (Fig. 1E). Phenotypic snapshots generated by our SinCHet
software showed melanoma cell lines with BRAF inhibitor sensi-
tivity (such as WM164) to be composed of a dominant popula-
tion of transcriptional State #1 and minor populations of transcrip-
tional States #2 and #4; this changed following chronic BRAF inhi-
bition, with State #1 declining and States #2, #3 and #4 expand-
ing (Fig. 1F). In contrast, some melanomas with low BRAF inhibitor
sensitivity (such as 1205Lu) lacked cell state #1 and instead con-
sisted of transcriptional states #2 and #3 at baseline, with tran-
scriptional state #3 being enriched following long-term drug treat-
ment (Fig. 1F). Both cell lines showed an equivalent initial level
of ERK inhibition following BRAF inhibitor treatment (Supplemen-
tal Fig. 6), suggesting that the different patterns of transcriptional
heterogeneity at baseline did not impact the level of inhibition in
the MAPK signalling pathway.
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Fig. 5. Evolutionary-informed BRAF inhibitor dosing schedules outperform continuous or fixed intermittent dosing in vivo A. Treatment schema for mouse experiment

comparing continuous and fixed intermittent schedule of BRAF inhibitor treatment to personalized, adaptive dosing using mathematical modelling of individual xenografted

tumours. B. Evolutionary-informed adaptive dosing schedules are associated with better tumour control than either continuous or fixed intermittent drug dosing. Data show

mean tumour volume data from WM164 melanoma xenografts between the three BRAF inhibitor treatment groups over time (left). Untreated “sentinel” mice receiving drug

free chow is shown by the dotted line. Average tumour volumes are shown for each treatment group on the last day of the experiment (right). C. Mathematical modelling

of tumour response dynamics under drug predicts individual dosing schedules for each mouse. Individual tumour volume and treatment data are shown from the adaptive

treatment group over time (green line = off therapy, red line = on therapy). D. Chart shows individual dosing schedules for each mouse on the adaptive treatment arm of the

xenograft experiment (grey: on therapy. White: off therapy), along with the increases in individual tumour volumes at the end of the experiment. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

Model calibration & prediction

• Make predictions of tumor volume changes in 2 treatment scenarios: on and off

• Follow model predicted treatment decision (on or off) for subsequent 2~3 days 

• Diverse treatment on and off schedule 

• ~ 50% less tumor volume & ~64% dose rate compared to continuous MTD

• Not all xenograft model benefits from adaptive therapy

Smalley et al. Ebiomedicine, 2019
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In vivo study summary

Smalley et al. Ebiomedicine, 2019

Days



Zhang et al. Nature Comm, 2017
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Benefits of adaptive therapy diverse

Smalley et al. Ebiomedicine, 2019

• Effectiveness of adaptive therapy will vary among patients 

• Who will likely benefit most from adaptive therapy?

• Predictive factors



•Who will likely benefit most from adaptive therapy?


•What are predictive factors?



Melanoma tumor burden marker

• Critical to obtain tumor burden as frequent as possible

• Serological marker that can be measured frequently 

• Melanoma tumor burden marker: LDH, lactate dehydrogenase

• LDH is only serologic marker used for monitoring advanced melanoma in US

• Elevated serum LDH is associated with worse outcomes in patients treated with BRAF/

MEK inhibitors

Int. J. Mol. Sci. 2011, 12             
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Figure 4. LDH as a prognosis marker for melanoma. Records of LDH levels of patients at 
the time of serum sample donation as well as 18-months later (or the last available LDH 
record if the patient died before 18-months follow-up) were examined. Patients in the High 
mortality group had significantly higher levels of LDH than those in the Low mortality 
group. The Low mortality group also showed significant reductions in LDH levels in the 
follow-up (paired t test, p < 0.001), while the High mortality group experienced no 
detectable changes in the LDH levels. 

 

2.7. Discussion 

Despite the reports of a variety of serum proteins as potential biomarkers for the diagnosis and 
prognosis of melanoma, few can be confirmed in large scale studies. According to the joint committee 
of tumor staging, LDH is the only marker that can clinically help characterize melanoma. Although 
many factors may account for this, one issue that cannot be ignored is the false positives that inflate the 
variation of test results among already complex samples. As we have experienced in the study of 
biomarkers using immunological approaches, the use of serum proteins as biomarkers have been 
hampered by the unpredictable serum interference due to the presence of human anti-animal 
immunoglobulin antibodies (HAIA).  

We have shown that by using a special buffer to eliminate serum interferences, two serum proteins, 
IL-8 and Cathepsin B, were significantly elevated in melanoma patients. Although the analysis of 
breast cancer samples indicated that elevated IL-8, not Cathepsin B, was associated with melanoma, 
both proteins are not unique to melanoma. To our surprise, Tyrosinase, a melanocyte specific marker 
that is involved in pigment synthesis [24], appears to maintain a normal level in the majority of 
melanoma patients as compared to healthy or breast cancer patients. We also studied MIA, another 
melanocyte specific marker, and unexpected found that only a small number of melanoma patients 
have elevated serum levels (data not shown). Furthermore, using multiplex assay, we have identified 
additional cytokines/chemokines that have higher serum levels in melanoma.  

There are clear evidences that IL-8 is associated with melanoma progression. IL-8 is produced by 
melanoma cell lines and functions as an autocrine growth factor [26]. Elevated IL-8 levels have been 
observed in patients with metastatic melanoma [19]. Higher blood levels of IL-8 and IL-6 may be 
associated with the Brenner sign, which is an erythematous eruption in the vicinity of or distant from 

Zhang et al. Int. J. Mol. Sci, 2011

Cox regression. Two-sided Mann–Whitney U-test was used to
compare means of continuous variables among groups. Catego-
rical variables were compared using two-sided Chi-squared test.
Throughout all analyses, P-values < 0.05 were considered statisti-
cally significant. All analyses were performed using R version 3.4.0
and the ‘survival’ package (R Core Team, 2017).

RESULTS
Patient characteristics
238 patients with advanced melanoma were included in our study
(152 patients in cohort 1, and 86 patients in cohort 2). Detailed
clinical characteristics are summarised in Table 1. Most patients
had stage M1c disease (76% in cohort 1, 86% in cohort 2) and had
visceral metastases (65% in cohort 1, 84% in cohort 2). Around
30% of the patients in both cohorts had central nervous system
(CNS) metastasis. Liver metastasis was present in 30% of the
patients in cohort 1 and in 49% in cohort 2. 39% and 43% of the
patients were treatment-naïve, respectively. Median follow-up
from start of immunotherapy was 9.9 months (interquartile range
[IQR] 4.8–15.7 months) in cohort 1, and 6.4 months (IQR
3.2–10.6 months) in cohort 2.

Association of baseline LDH and S100B with survival
Survival analysis at 1 year after initiation of immunotherapy
showed a clear correlation of death with high biomarker levels
(Supplementary Figure S1). Univariate analysis of OS revealed

significantly shortened OS in patients with elevated lactate
dehydrogenase LDH > 1.5 × upper limit of normal (ULN) compared
with patients with LDH ≤ 1.5 × ULN in cohort 1 (hazard ratio (HR)
3.75, 95% confidence interval (CI) 1.77–7.95, P= .00022) and in
cohort 2 (HR 2.58, 95% CI 1.30–5.13, P= .0050) (Fig. 1a, b). Patients
with S100B levels > 0.3 µg/l also presented with significantly
shortened OS in cohort 1 (HR 3.52, 95% CI 1.82–6.81, P < .0001)
as well as in cohort 2 (HR 5.17, 95% CI 2.57–10.39, P < .0001)
(Fig. 1c, d).
Multivariate Cox regression analysis of OS in the pembrolizu-

mab treated patients of cohort 1 including S100B, LDH, and the
well-known prognostic factor visceral metastasis (model 1)
revealed S100B (HR 2.54, 95% CI 1.20–5.37, P= .014), LDH (HR
2.39, 95% CI 1.02–5.59, P= .045) and visceral metastasis (HR 4.04,
95% CI 1.56–10.45, P= .0039) as independent prognostic factors
(Table 2). Multivariate model 2 included S100B, LDH, visceral
metastasis as well as brain metastasis, another well-known
prognostic factor associated with survival. In model 2, S100B (HR
2.93, 95% CI 1.40–6.17, P= .0045) was independently associated
with OS, whilst LDH (HR 2.06, 95% CI 0.89–4.78, P= .09), CNS
metastasis (HR 2.15, 95% CI 0.98–4.70, P= .06) and visceral
metastasis (HR 2.60, 95% CI 0.88–7.65, P= .08) were not (Table 2).
In multivariate analysis of OS in the ipilimumab+ nivolumab
treated patients of cohort 2 S100B was independently associated
with OS in both models (model 1: HR 6.97, 95% CI 2.87–16.89,
P < .0001; model 2: HR 7.29, 95% CI 2.97–17.89, P < .0001)
(Table 3).
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Applying the model to patient data

• 8 patients with metastatic melanoma, treated with continuous MTD BRAF/MEK

• LDH: every 2~4 weeks

• PD: progression disease ( > +20%), SD: stable disease (<= +20%), PR: partial response 

(< -25%)



Ensemble prediction
Single forecast of the most 
likely outcome based on the 
best (?) model


Versus


A set of predictions account 
for sources of uncertainty

(Initial conditions, 
Parameters, 

Unknown mechanisms

Stochasticity)



Two different mathematical models
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to continuous MTD therapy. The first model is a Lotka-Volterra competition model (LV) (29), where 
genetically fixed drug-sensitive and -resistant populations compete for limited resources. The 
model assumes resistant cell growth inhibition by a drug-sensitive population. The second model 
considers phenotypic switching (SW). In addition to competition within and between cell 
phenotypes, this model allows for switching from sensitive to resistant states or vice-versa when 
treatment is on or off, respectively. We estimated model parameters by minimizing the difference 
between model prediction and patient data. For each patient, we used longitudinal data from a 
serologic marker that is used to monitor advanced melanoma. 

The cohort of patients had advanced/metastatic melanoma. All were treated with continuous 
therapy at MTD. Their therapy consisted of BRAF/MEK inhibitors (either vemurafenib + 
cobimetinib, or dabrafenib + trametinib). Several had disease progression within 6 months of 
treatment (Figure 1). Whilst melanoma does not have an ideal biomarker of burden, LDH (Lactate 
dehydrogenase) is clinically used in melanoma treatment decision making as a correlate of tumor 
burden and cancer dynamics. LDH is the only serologic marker used for monitoring advanced 
melanoma in the US (30). Elevated serum LDH is associated with worse outcomes in patients 
treated with BRAF/MEK inhibitors, based on the results of a pooled analysis of three trials 
involving dabrafenib/trametinib with over 600 patients (31). In the cohort of the current study, all 
patients had an elevated LDH at the start of treatment, and serial LDH levels were measured in 
blood at baseline and during routine blood draws approximately every 2-4 weeks (Fig. S1 & Table 
S1). LDH was used as a biomarker to correlate with melanoma tumor burden, which could only 
be measured directly in patients with computed tomography (CT) imaging every 2 to 3 months. It 
is worth noting that an elevated level of LDH appeared to correlate with disease response and 
progression determined by CT imaging (Fig. S1 & Table S1). Temporal LDH profiles for each of 
the 8 patients highlight heterogeneous responses, with some rapidly developing therapy 
resistance (P6-8), while others took longer to progress (P1-5). Note that the initial tumor burden 
level is also different across the patients (LDH range: ~300 to ~1500).  

Model calibration (see methods) to the melanoma patient LDH data provided a suite of parameter 
sets that fit the patient data equally well, defining a virtual cohort of patients (32). Using this virtual 
cohort, we used the models to predict what might have been the patient's responses to different 
adaptive therapy schedules. Our results show that adaptive therapies can delay the time to 
progression up to several months with less cumulative drug dose rate compared to the continuous 
MTD regime. Further, we identified key model parameters that determine the benefit of adaptive 
therapy that could be used to select patients suitable for this evolutionary therapeutic approach.   

Mathematical modeling  

The first model uses Lotka-Volterra (LV) competition equations to describe the competition 
between two distinct cancer cell populations, drug-sensitive (S) and drug-resistant (R) cells (Fig. 
2A):    
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" + *
+ ," − -", 
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where %!," indicate the intrinsic growth rates of S and R, respectively. The term - > 0 imposes a 
death rate on S due to therapy. In the absence of treatment, we set - = 0. Furthermore, we 
assume that treatment stops any proliferation by sensitive cells, and so we set %! = 0 when 
treatment is on and %! > 0 when treatment is off. The two populations, S and R, share the same 
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carrying capacity +, the maximum size of the tumor due to nutrient and space constraints. The 
coefficient / scales the degree to which sensitive cells inhibit the growth rate of resistant cells. If 
C > 1 (or C < 1), then sensitive cells have a greater (or smaller) competitive effect on resistant 
cells than resistant cells have on themselves.  

As a second variant of the therapy model, we consider the case where phenotypic plasticity allows 
for switching between drug-sensitive and resistant cell types (SW, Fig. 2B): 
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This model is a direct extension of the first model, and as such, all overlapping parameters are 
the same. There are two key differences. First, sensitive cells no longer have a scaled effect on 
resistant cells, and so C = 1. Second, sensitive cells can switch to resistant ones at rate 3, or 
resistant cells to sensitive ones at rate 4, depending on whether treatment is on or off. Note that 
3 is non-zero when treatment is on and zero otherwise, whereas 4 is non-zero when treatment is 
off and zero when treatment is on.  

To more easily visualize and understand the dynamics of these two models, we non-
dimensionalized them (6 = %"#, "̅ = " +,⁄ *9 = * +)⁄  and examined their dynamics in the phase 
plane of "̅	<=. *9. In the LV model, the competition coefficient / and initial populations ("̅(0), *9(0)) 
determine the number of intermittent therapy cycles before resistance dominates (Fig. 2A). 
Intermittent therapy results in more on-off treatment cycles when both / and "̅(0) are large (Fig. 
2A bottom panel). In the SW model (Fig. 2B), intermittent therapy results in more on-off treatment 
cycles when both the initial sensitive population ("̅(0)) and the switching rate from resistant to 
sensitive populations (4) are large (Fig. 2B bottom panel). These analyses help focus our attention 
on the key parameters that might determine the efficacy of adaptive therapy. 

Parameter estimation for the eight patients 

We identified model parameters that minimized the difference between model predictions and 
patient data (Figure 1). The cost function for this optimization is to minimize ?2 norm of the 
difference, 

min
!→
DE F#; %→I − ?(#)D&

&
	, 

where %→ is the entire model parameter set, and E is the predicted total tumor burden (E = " + *) 
at time #  and ?  is the actual tumor burden at time # . Here, we assume that LDH is directly 
proportional to S + R. The LV model parameter set includes intrinsic growth rates, carrying 
capacity, death rate, and the competition coefficient. Note, we assume that sensitive cells do not 
divide when treatment is on (%! = 0, with therapy on). All patient data is for continuous treatment 
(at the time of writing, we do not have intermittent therapy results for such patients). Thus, a 
parameter set for the LV model is J = {"', +, -, %" , /}, where "' is the initial number of sensitive 
cells and *' = ?MN'(1 − "') is the initial number of resistant cells. In the SW model, the transition 
rate from resistant to sensitive is assumed to be zero when treatment is on. The parameter set 
for the SW model is J = {"', +, -, %" , 3}. We employed a steepest descent optimization algorithm 
with implicit filtering (33) to identify best-fit parameters for both models (Supplementary excel file). 
Parameter estimations were conducted in MATLAB using the implicit filtering algorithm (33). We 

.



Model calibration

R2= 0.81
relative error: 0.004 -0.62
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Model predicted adaptive therapy

• Treatment stop when LDH <= -50% of initial, re-start: LDH = initial

• Adaptive therapy delayed time to progression: ~4.6 months with ~54% dose rate 

compared to continuous MTD
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• Various parameters (not estimated) considered

• Time gained from continuous therapy: ~ 20 months

• Dose rate: 20~74% of continuous MTD

• Most beneficial: R—>S switching rate is high & sensitive cell growth rate is low
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• Treatment stop when LDH <= -20% of initial, re-start: LDH = initial

• Time gained from continuous therapy: up to 25 months

• Dose rate: 6~66% of continuous MTD
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Progression free survival

• PFS of adaptive therapy is significantly higher than MTD

• -20% is better than -50% stopping criteria
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Mathematical model: competition

to continuous MTD therapy. The first model is a Lotka-Volterra competition model (LV) (29), where 
genetically fixed drug-sensitive and -resistant populations compete for limited resources. The 
model assumes resistant cell growth inhibition by a drug-sensitive population. The second model 
considers phenotypic switching (SW). In addition to competition within and between cell 
phenotypes, this model allows for switching from sensitive to resistant states or vice-versa when 
treatment is on or off, respectively. We estimated model parameters by minimizing the difference 
between model prediction and patient data. For each patient, we used longitudinal data from a 
serologic marker that is used to monitor advanced melanoma. 

The cohort of patients had advanced/metastatic melanoma. All were treated with continuous 
therapy at MTD. Their therapy consisted of BRAF/MEK inhibitors (either vemurafenib + 
cobimetinib, or dabrafenib + trametinib). Several had disease progression within 6 months of 
treatment (Figure 1). Whilst melanoma does not have an ideal biomarker of burden, LDH (Lactate 
dehydrogenase) is clinically used in melanoma treatment decision making as a correlate of tumor 
burden and cancer dynamics. LDH is the only serologic marker used for monitoring advanced 
melanoma in the US (30). Elevated serum LDH is associated with worse outcomes in patients 
treated with BRAF/MEK inhibitors, based on the results of a pooled analysis of three trials 
involving dabrafenib/trametinib with over 600 patients (31). In the cohort of the current study, all 
patients had an elevated LDH at the start of treatment, and serial LDH levels were measured in 
blood at baseline and during routine blood draws approximately every 2-4 weeks (Fig. S1 & Table 
S1). LDH was used as a biomarker to correlate with melanoma tumor burden, which could only 
be measured directly in patients with computed tomography (CT) imaging every 2 to 3 months. It 
is worth noting that an elevated level of LDH appeared to correlate with disease response and 
progression determined by CT imaging (Fig. S1 & Table S1). Temporal LDH profiles for each of 
the 8 patients highlight heterogeneous responses, with some rapidly developing therapy 
resistance (P6-8), while others took longer to progress (P1-5). Note that the initial tumor burden 
level is also different across the patients (LDH range: ~300 to ~1500).  

Model calibration (see methods) to the melanoma patient LDH data provided a suite of parameter 
sets that fit the patient data equally well, defining a virtual cohort of patients (32). Using this virtual 
cohort, we used the models to predict what might have been the patient's responses to different 
adaptive therapy schedules. Our results show that adaptive therapies can delay the time to 
progression up to several months with less cumulative drug dose rate compared to the continuous 
MTD regime. Further, we identified key model parameters that determine the benefit of adaptive 
therapy that could be used to select patients suitable for this evolutionary therapeutic approach.   

Mathematical modeling  

The first model uses Lotka-Volterra (LV) competition equations to describe the competition 
between two distinct cancer cell populations, drug-sensitive (S) and drug-resistant (R) cells (Fig. 
2A):    

!"
!# = %! &1 −

" + *
+ ," − -", 

!*
!# = %" &1 −

/ ∗ " + *
+ ,*, 

where %!," indicate the intrinsic growth rates of S and R, respectively. The term - > 0 imposes a 
death rate on S due to therapy. In the absence of treatment, we set - = 0. Furthermore, we 
assume that treatment stops any proliferation by sensitive cells, and so we set %! = 0 when 
treatment is on and %! > 0 when treatment is off. The two populations, S and R, share the same 
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relative error: 0.003 -0.91

Model calibration & prediction 

measured LDH

 3.5 months

continuous therapy simulation

adaptive therapy simulation

accumulated drug 
= ~46% of continuous

• Predicted time gained: ~3.5 months (vs. 4.3 months from the previous model)

• Dose rate: ~46% of continuous MTD
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Predicted benefit

• Various growth rates of sensitive cell population considered: rS: 0~95% of rR

• Dot: average time gained for each patient 

• Time gained: ~6 months (vs. 20 months from the drug induced resistance model)

• Dose rate: 12~100% of continuous MTD

• Most beneficial: large number of initial sensitive cells
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Progression free survival

• PFS of adaptive therapy is significantly higher than MTD

• -20% is better than -50% stopping criteria



Conclusion

• Effectiveness of adaptive therapy varies among patients


• Understanding the underlying mechanism for the variability for patient selection


• Multiple mathematical and computational models may be required


• Two different mathematical models: competition and plasticity


• Adaptive therapy improves progression free survival compared to MTD 

continuous therapy


• Key predictive factors: initial number of sensitive cell population, switching rate 

from R to S, and growth rate of drug sensitive cell population
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