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1. Cancer Treatment as a Stackelberg Evolutionary Game

players physician (leader) patients’ cancer cells (followers)
strategies therapy options effective strategies of therapy resistance
objectives | patients’ quality of life fitness
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players physician (leader) patients’ cancer cells (followers)
strategies therapy options effective strategies of therapy resistance
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Two critical asymmetries:
@ (rationality) Only the physician is rational and he/she can anticipate future
events. In contrast, cancer cells, typical of evolving organisms in nature, can
only respond to what is happening or has happened
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Two critical asymmetries:

@ (rationality) Only the physician is rational and he/she can anticipate future
events. In contrast, cancer cells, typical of evolving organisms in nature, can
only respond to what is happening or has happened

@ (timing) The physician always makes the first move by applying therapy and

only then can cancer cells “play” by responding through the evolution of
resistance strategies
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Two critical asymmetries:
@ (rationality) Only the physician is rational and he/she can anticipate future
events. In contrast, cancer cells, typical of evolving organisms in nature, can
only respond to what is happening or has happened
@ (timing) The physician always makes the first move by applying therapy and
only then can cancer cells “play” by responding through the evolution of
resistance strategies

We study how physician can utilize these advantages the best.
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players physician (leader) patients’ cancer cells (followers)
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objectives | patients’ quality of life fitness

Two critical asymmetries:

@ (rationality) Only the physician is rational and he/she can anticipate future
events. In contrast, cancer cells, typical of evolving organisms in nature, can
only respond to what is happening or has happened

@ (timing) The physician always makes the first move by applying therapy and
only then can cancer cells “play” by responding through the evolution of
resistance strategies

We study how physician can utilize these advantages the best.
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1. Cancer Treatment As a Stackelberg Evolutionary Game

Physicians as the SEG leaders can achieve a lot if they know a lot.

But: What if we are a leader that

@ does not know much about resistance mechanisms to the treatment they
apply?

@ does not know much about the effect of treatment on the evolution of
resistance in this cancer?

@ has only very limited measurements of treated patients?

Is there still a potential to predict what’s going on to happen to patients on
this treatment and/or learn what could have been done differently for those
patients where the treatment failed?
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1. Cancer Treatment As a Stackelberg Evolutionary Game

Physicians as the SEG leaders can achieve a lot if they know a lot.

But: What if we are a leader that

@ does not know much about resistance mechanisms to the treatment they
apply?

@ does not know much about the effect of treatment on the evolution of
resistance in this cancer?

@ has only very limited measurements of treated patients?

Is there still a potential to predict what’s going on to happen to patients on
this treatment and/or learn what could have been done differently for those

patients where the treatment failed?
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2. SEG Application to Treatment of Metastatic Non-Small
Cell Lung Cancer (NSCLC)
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2. SEG Application to Treatment of Metastatic Non-Small
Cell Lung Cancer (NSCLC)

Data on NSCLC treated with Immune Checkpoint Inhibitian:

@ Stage 4, anti-PD1 drug Atezolizumab (MPDL3280A)
@ Tumor diameter over time, typically few time points
@ In our dataset typically 2 or 3 metastases per patient
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2. SEG Application to Treatment of Metastatic Non-Small
Cell Lung Cancer (NSCLC)
Data on NSCLC treated with Immune Checkpoint Inhibitian:

@ Stage 4, anti-PD1 drug Atezolizumab (MPDL3280A)
@ Tumor diameter over time, typically few time points
@ In our dataset typically 2 or 3 metastases per patient

Our questions:

@ Based on the initial tumor volume proxy and its trend, can we predict
how its volume will change in the future?

© Would adaptive immunotherapy work in cases where tumor keeps
growing when treated in the standard way?
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2. SEG Application to Treatment of Metastatic Non-Small
Cell Lung Cancer (NSCLC)

Data on NSCLC treated with Immune Checkpoint Inhibitian:

@ Stage 4, anti-PD1 drug Atezolizumab (MPDL3280A)
@ Tumor diameter over time, typically few time points
@ In our dataset typically 2 or 3 metastases per patient

Our questions:

@ Based on the initial tumor volume proxy and its trend, can we predict
how its volume will change in the future?

© Would adaptive immunotherapy work in cases where tumor keeps
growing when treated in the standard way?

@ Fitting the data into minimalistic G-function model

@ Optimizing the treatment for cases with tumor R Ui’ NWO 'm
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2. SEG Application to Treatment of Metastatic NSCLC

Example of data:

Patient 1, tumor: 1 Patient 12, tumor: 1
.

° « diameter of the tumor s diameter of the tumor

£

millimeters
8 5
.
.
millimeters
& & 2 & & 8 B ¢

L3

o 50 100 150 200 250 300 350 o 20 40 60 80 100 120
days from immunotherapy treatment start days from immunotherapy treatment start

-]

@ All patients treated with the same immune checkpoint inhibition

@ Treatment starts between the first and second data points
Are these different trends a result of treatment-induced resistance and other
patient- and tumor-specific factors? g Mazstricht \ 2 o
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2. SEG Application to Treatment of Metastatic NSCLC
NSCLC model details (Vincent and Brown (2005)):

symbol & range | meaning
me{0,1} treatment (on or off)
. €[0,1 rate of treatment-
X=X G(m7 u, X) o] induced resistance
3G( m, u, X) K>0 carrying capacity
u=0— x€[0,K] cancer cell population
ou G(m,u,x) fitness-generating function
X m Imax > 0 maximal growth rate
G(mv va) =I’(U) (1 _?)_k+—bu_d d>0 natural death rate
>0 evolutionary speed
k>0 innate resistance
b>0 effect of u
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2. SEG Application to Treatment of Metastatic NSCLC
NSCLC model details (Vincent and Brown (2005)):

symbol & range

meaning

x=xG(m,u,x)
__0G(m,u,x)
- ou
X m
G(m,u.x) = r(w) (1- %) = = -

me{0,1}
€[0,1]

K>0

€ [0,K]
G(m, u,x)
rma><>0
a>0
c>0
k>0
b>0

treatment (on or off)
rate of treatment-
induced resistance
carrying capacity
cancer cell population
fitness-generating function
maximal growth rate
natural death rate
evolutionary speed
innate resistance
effect of u

Three different forms of r(u) considered:

@ Quadratic cost of resistance: r(u) = rmax(1 - u?)

@ Linear cost of resistance: r(u) = fax(1-u)
@ No cost of resistance : r(u) = fax
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2. SEG Application to Treatment of Metastatic NSCLC

Fitting the model (also for predictions):
@ The population of cancer cells is estimated from the diameter.
@ Distinguishing 6 groups of tumors: 3 according to initial volume and 2
according to initial trend.
@ Fix K, b and o per group, estimate r,.x, k and u(0) per patient, d fixed to 0.01.

Small Medium | Large
K=01 |K=2 K=2 % = x G(m, u, X)
Increasing b=100 b=150 | b=0.9 0G(m, u, x)
o =0.01 oc=0.01 | 0=0.05 U= -— 227
K=1000 | K=05 | K=1000 a”X .
Decreasing | b=5 b=2 b=10 G(m,u,x):r(u)(1——)———d
5=0.05 | 0=0.01 | o=0.01 K/ k+bu
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2. SEG Application to Treatment of Metastatic NSCLC

Fitting the model (also for predictions):
@ The population of cancer cells is estimated from the diameter.

@ Distinguishing 6 groups of tumors: 3 according to initial volume and 2

according to initial trend.

@ Fix K, b and o per group, estimate r,.x, k and u(0) per patient, d fixed to 0.01.

Small Medium | Large
K=0.1 K=2 K=2 X =xG(m,u,x)
Increasing b =100 b =150 b=0.9 9G(m, u, x)
0=0.01 | 6=001 | 6=0.05 s A
K=1000 | K=05 | K=1000 a”X .
Decreasing | b=5 b=2 b=10 G(m,u,x):r(u)(1——)———d
5=0.05 | 0=0.01 | o=0.01 K/ k+bu
Jakob Nikolas Kather: "There is no cost of P>, Maastricht
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2. SEG Application to Treatment of Metastatic NSCLC

Fitting the model:

Patient 6, tumor: 1

10 u (resistance) X (population)
+ U —— real measurements
o8 0008 ¢ —— model predictions
P
E 0007
2o E
o N
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o 04
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. - 0.004
-
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days from immunotherapy treatment start  days from immunotherapy treatment start
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2. SEG Application to Treatment of Metastatic NSCLC

Comparison with linear and exponential models:

@ Mean of the R2-scores: 0.59, 0.72, 0.80 for linear, exponential and
evolutionary models, respectively.

Patient 6 , tumor 1

Linear. R2 score: 0.5164 Exponential. R2 score: 0.6147 Evolutionary. R2 score: 0.9557
—— real data —— real data —— real data

o008 { —— predicted values 0008 { —— predicted values oo08{ —— predicted values
S 0007 S 0007 S 0007
£ £ £
= 2 =
G ooos G ooos S o006
@ @ @
E E E
2 2 2
2 0005 2 0005 2 0005

0004 0004 0004

B0 200 0 wWo 10 W0 250 W B0 ;0
days fmm immunotherapy treatment start days fmm immunotherapy treatment start days fmm immunoctherapy treatment start

Linear, exponential and evolutionary model with quadratic cost of resistance
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2. SEG Application to Treatment of Metastatic NSCLC

Evolution of treatment-induced resistance only plays an important role in
tumors that exhibit a rapid change of trend.

Patient 6, tumor: 1

value of u

10 u with evolution of resistance (sigma=>0)

X with evolution of resistance

10 u with no evolution of resistance (sigma=0)

% with no evolution of resistance
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08
E 0007 E 0007
3 2 06 £
b 5 Pt
S 0006 o 5 0005
£ B 3
s
3 >0 3
3 S
S ooos S oous
P— 02
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. . e . . e . .
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00
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[} EY
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[ 0
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Evolutionary model with quadratic cost of resistance with and without evolution of resistance
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2. SEG Application to Treatment of Metastatic NSCLC

Evolution of treatment-induced resistance only plays an important role in
tumors that exhibit a rapid change of trend.

Patient 3, tumor: 1

10 u with evolution of resistance (sigma=>0) x with evolution of resistance 10 u with no evolution of resistance (sigma=0) X with no evolution of resistance
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Evolutionary model with quadratic cost of resistance with and without evolution of resistance
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2. SEG Application to Treatment of Metastatic NSCLC

Comparison of the different forms of r(u):

10

Value of u

00
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2. SEG Application to Treatment of Metastatic NSCLC
Optimization
m*(-) = arg (tr)m{gﬂX( )
(1) = x(t) G(m(t), u(t), x(1))
b(t) - o 28D, U, x()
ou(t)
X(t)) m(t)

G(m(t),u(t),x(t)) = r(u(t))( -—=)- m -d, te[0,T]
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2. SEG Application to Treatment of Metastatic NSCLC

Optimization
m*(-) = arg m(gy{gJ}X(T)
(1) = x(t) G(m(t), u(t), x(1))
9G (m(t),u(t),x(1))

u(t)=o

ou(t)
_ _xON__m
G(m(t),u(t),x(t)) —r(u(t))(1 i ) K+ bu(D) d, te[0,T]

Preliminary results:

@ With linear and/or quadratic cost of resistance, the best is to always treat or not
treat at all

@ With no cost of resistance, sometimes it is the best to switch between no and

standard treatment. We do not understand yet when precisely.

. . . . P Maastricht .~ )
@ With the objective min x(T), we can never stop the growth, < University N/O '
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2. SEG Application to Treatment of Metastatic NSCLC

Optimization - preliminary results:

Patient 13, tumor: 2
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3. Conclusions & Future Research
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3. Conclusions & Future Research

@ Hypothesis: With objective of final tumor minimization, adaptive therapy could
help the patients with NSCLC only if it there is no cost of resistance
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@ Hypothesis: With objective of final tumor minimization, adaptive therapy could
help the patients with NSCLC only if it there is no cost of resistance

@ This may not hold with other treatment objectives, we will explore this next
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@ For tumors that change diameter rapidly, evolution of treatment-induced
resistance plays a role
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@ Hypothesis: With objective of final tumor minimization, adaptive therapy could
help the patients with NSCLC only if it there is no cost of resistance

@ This may not hold with other treatment objectives, we will explore this next
@ For tumors that change diameter rapidly, evolution of treatment-induced
resistance plays a role

@ For small tumors the error in estimating tumor volume may cause issues with
the best fit; it may be that our conclusion would change with better tumor proxy
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3. Conclusions & Future Research

@ Hypothesis: With objective of final tumor minimization, adaptive therapy could
help the patients with NSCLC only if it there is no cost of resistance

@ This may not hold with other treatment objectives, we will explore this next

@ For tumors that change diameter rapidly, evolution of treatment-induced
resistance plays a role

@ For small tumors the error in estimating tumor volume may cause issues with
the best fit; it may be that our conclusion would change with better tumor proxy

@ Our model has better predictive capabilities than linear/exponential models
used until now
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4. Discussion Points/Questions for You

@ Does resistance to immune checkpoint inhibition in NSCLC carry a cost?

@ If yes, is there any way how to estimate it from other measurements (For other
projects/cancers, we are exploring whether genomics and histopathology can
help us to answer such questions, but here we know too little)?

@ What other information can be useful here?
@ Would a model with immune cells as active players be a better choice here?
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Thank you !
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